
Jahresbericht 2013

Luftgütemessungen der Umweltschutzabteilung der Stadt Wien

gemäß Immissionsschutzgesetz – Luft

MA 22 – 500/2010

9. Juli 2014

Jahresbericht 2013. Luftgütemessungen gemäß IG-L

Inhaltsverzeichnis

1	Übe	ersicht	1
	1.1	Überschreitungen gemäß IG-L	2
	1.2	Überschreitungen gemäß Ozongesetz	4
2	Allg	gemeine Informationen	5
	2.1	Gesetzliche Grundlagen	5
	2.2	Grenzwerte, Zielwerte und Alarmwerte gemäß IG-L	5
		2.2.1 Grenzwerte	
		2.2.2 Zielwerte2.2.3 Alarmwerte	
	2.3	Informationswerte, Zielwerte und Alarmwerte gemäß Ozongesetz	8
		2.3.1 Informations- und Warnwerte für Ozon2.3.2 Zielwerte für Ozon	
	2.4	Berücksichtigung des Winterdienstanteils bei PM ₁₀	
	2.5	Übersiedlung der Trendmessstelle Rinnböckstraße	9
3	Erg	ebnisse kontinuierlicher Messungen	10
	3.1	Schwefeldioxid (SO ₂)	10
	3.2	Feinstaub PM ₁₀	12
	3.3	Feinstaub PM _{2,5}	18
	3.4	Stickstoffdioxid (NO ₂)	20
	3.5	Kohlenmonoxid (CO)	24
	3.6	Ozon (O ₃)	26
4	Erg	ebnisse diskontinuierlicher Stichprobenanalysen	32
	4.1	Benzol	32
	4.2	Benzo(a)pyren	33
	4.3	Schwermetalle im PM ₁₀	33
	4.4	Staubniederschlag	34
	4.5	Blei im Staubniederschlag	35
	4.6	Kadmium im Staubniederschlag	36
5	Vor	erkundungsmessungen	38
6	Aus	blick	38
7	Anl	nang	40
	7.1	Abkürzungen	40
	7.2	Umrechnungsfaktoren	41
	7.3	Messstellen im Jahr 2013	42
	7.4	Änderung von Messstellennamen	43
	7.5	Messverfahren	43

IG-L Jahresbericht Wien 2013

8	Lite	eratur		51
		7.7.2	Herleitung der Kalibrierfunktionen	48
		7.7.1	Verwendete Kalibrierfunktionen	47
	7.7	Nachv	veis der Äquivalenz und Herleitung von Kalibrierfunktionen	46
	7.6	Messu	insicherheiten	45

Abbildungsverzeichnis

Abbildung 1: Schwefeldioxid Messstellen	10
Abbildung 2: Schwefeldioxid Jahresmittelwerte von 1997 bis 2013	11
Abbildung 3: Feinstaub PM ₁₀ Messstellen	12
Abbildung 4: Feinstaub PM ₁₀ Jahresmittelwerte von 2002 bis 2013	17
Abbildung 5: Feinstaub PM _{2,5} Messstellen	18
Abbildung 6: PM _{2,5} Jahresmittelwerte von 2003 bis 2013	19
Abbildung 7: Stickstoffdioxid Messstellen	20
Abbildung 8: Stickstoffdioxid und Stickstoffoxid Jahresmittelwerte von 1997 bis 2013	23
Abbildung 9: Kohlenmonoxid Messstellen	24
Abbildung 10: Kohlenmonoxid Jahresmittelwerte von 1997 bis 2013	25
Abbildung 11: Ozon Messstellen	26
Abbildung 12: Ozon Überschreitungen in Wien im Jahr 2013 – Belastungsbild	29
Abbildung 13: Ozon Jahresmittelwerte von 1997 bis 2013	30
Abbildung 14: Maximaler Ozon-Einstundenwert eines Jahres von 1997 bis 2013	31
Abbildung 15: Ozon, AOT40 gemittelt über 5 Jahre in Wien	31
Abbildung 16: Benzol Jahresmittelwerte von 2003 bis 2013	32
Abbildung 17: Bezo(a)pyren Jahresmittelwerte 2007 bis 2013	33
Abbildung 18: Schwermetalle in PM ₁₀ – Jahresmittelwerte von 2007 bis 2013	34
Abbildung 19: Staubniederschlag – Jahresmittelwerte von 2003 bis 2013	35
Abbildung 20: Blei im Staubniederschlag – Jahresmittelwerte von 2003 bis 2013	36
Abbildung 21: Kadmium im Staubniederschlag – Jahresmittelwerte von 2003 bis 2013	36
Abbildung 22: Messstellen des Wiener Luftmessnetzes	42

Tabellenverzeichnis

Tabelle 1: Anzahl der überwachten Luftschadstoffe in den Messstellen	1
Tabelle 2: Überschreitungsübersicht 2013 für Schwefeldioxid (SO ₂)	2
Tabelle 3: Überschreitungsübersicht 2013 für Feinstaub in der Fraktion PM ₁₀	2
Tabelle 4: Überschreitungsübersicht 2013 für Feinstaub in der Fraktion PM _{2,5}	2
Tabelle 5: Überschreitungsübersicht 2013 für Stickstoffdioxid (NO ₂)	3
Tabelle 6: Überschreitungsübersicht 2013 für Kohlenmonoxid (CO)	3
Tabelle 7: Überschreitungsübersicht 2013 für diskontinuierlich erfasste Schadstoffe	4
Tabelle 8: Überschreitungsübersicht 2013 für Ozon (O ₃)	4
Tabelle 9: Übersicht über die im IG-L für 2013 festgelegten Grenzwerte	6
Tabelle 10: Übersicht über die im IG-L festgelegten Zielwerte	7
Tabelle 11: Übersicht der im IG-L festgelegten Alarmwerte	7
Tabelle 12: Übersicht der Ozon Informations- und Alarmschwellwerte	8
Tabelle 13: Ozon Zielwerte bezüglich Gesundheits- und Vegetationsschutz	8
Tabelle 14: Schwefeldioxid Monatsmittelwerte im Jahr 2013	10
Tabelle 15: PM_{10} -Jahresmittelwerte und Anzahl der Tage mit $TMW > 50 \mu g/m^3$ im Jahr $2013 \dots$	13
Tabelle 16: Feinstaub PM ₁₀ Überschreitungstage und -werte	15
Tabelle 17: Feinstaub PM ₁₀ Monatsmittelwerte im Jahr 2013	16
Tabelle 18: Anzahl der Tage mit PM ₁₀ Überschreitungen im Jahr 2013	16
Tabelle 19: Feinstaub PM _{2,5} Monatsmittelwerte im Jahr 2013	18
Tabelle 20: Stickstoffdioxid Grenzwertüberschreitungen in Wien im Jahr 2013	20
Tabelle 21: Stickstoffdioxid Zielwertüberschreitungen in Wien im Jahr 2013	21
Tabelle 22: Stickstoffdioxid Monatsmittelwerte in Wien im Jahr 2013	22
Tabelle 23: Stickstoffoxid Monatsmittelwerte in Wien im Jahr 2013	22
Tabelle 24: Kohlenmonoxid Monatsmittelwerte in Wien im Jahr 2013	24
Tabelle 25: Ozon-Episoden in Nordostösterreich 2013	26
Tabelle 26: Ozon-Episoden in Nordostösterreich 2013	27
Tabelle 27: Ozon-Episoden in Wien 2013	27
Tabelle 28: Ozon-Zielwertüberschreitungen in Wien im Jahr 2013	28

Tabelle 29: Ozon Monatsmittelwerte in Wien im Jahr 2013
Tabelle 30: Anzahl der Ozon – Überschreitungstage in Wien im Jahr 2013
Tabelle 31: Schwermetalle in PM ₁₀ – Jahresmittelwerte in Wien von 2007 bis 201334
Tabelle 32: PM ₁₀ Erfassung an Wiener Messstellen
Tabelle 33: PM _{2,5} Erfassung an Wiener Messstellen
Tabelle 34: Mittelwerte
Tabelle 35: Luftschadstoffe
Tabelle 36: Meteorologie
Tabelle 37: Einheiten
Tabelle 38: Bezeichnungen – allgemein
Tabelle 39: Umrechnung der Mischungsverhältnisse
Tabelle 40: geänderte Messstellennamen
Tabelle 41: Überblick über die kontinuierlichen Messverfahren
Tabelle 42: Überblick über die diskontinuierlichen Messverfahren
Tabelle 43: relative erweiterte kombinierte Messunsicherheiten für Einstundenmittelwerte
Tabelle 44: relative erweiterte kombinierte Messunsicherheiten für Jahresmittelwerte
Tabelle 45: relative erweiterte Messunsicherheiten für kontinuierliche Feinstaub-Jahresmittelwerte
Tabelle 46: Kalibrierfunktionen für äquivalente PM ₁₀ -Ergebnisse des Jahres 2013
Tabelle 47: Kalibrierfunktionen für äquivalente PM _{2,5} -Ergebnisse des Jahres 2013
Tabelle 48: äquivalente PM ₁₀ -Ergebnisse (Testfälle) mit dem Messgerätetyp Grimm EDM-180 für ganz Wien ohne der Station "Liesing-Gewerbegebiet"
Tabelle 49: äquivalente PM ₁₀ -Ergebnisse (Testfälle) mit dem Messgerätetyp Grimm EDM-180 für die Station "Liesing-Gewerbegebiet"
Tabelle 50: äquivalente PM _{2,5} -Ergebnisse (Testfälle) mit dem Messgerätetyp Grimm EDM-180 für Wien50

1 Übersicht

Der vorliegende Bericht präsentiert die Ergebnisse der Immissionsmessungen des Jahres 2013, durchgeführt vom Luftmessnetz der Stadt Wien. Die Beurteilung der Wiener Luftgüte erfolgt dabei anhand der im Immissionsschutzgesetz-Luft (IG-L) [1], sowie im Ozongesetz (OzonG) [5] festgelegten Luftqualitätskriterien.

Die folgende Aufstellung (Tabelle 1) gibt einen Überblick über die überwachten Luftschadstoffe und die Anzahl der entsprechenden Messstationen.

Überblick über die gesetzlich zu überwachenden Luftschadstoffe													
V	gesetzl.	Methode		Anzahl Messstellen									
Komponente	Grundlage	Метпоае	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
SO_2	IG-L	kontinuierlich	12	12	10	10	10	10	10	9	7	7	7
TSP	IG-L	kontinuierlich	10	4									
NO_2	IG-L	kontinuierlich	17	17	17	17	17	17	17	17	17	17	17
CO	IG-L	kontinuierlich	4	4	4	4	4	4	4	4	4	4	4
O_3	OzonG	kontinuierlich	5	5	5	5	5	5	5	5	5	5	5
PM_{10}	IG-L	kontinuierlich	5	11	13	13	13	13	13	13	13	13	13
PM _{2,5}	IG-L	kontinuierlich	1	1	1	1	2	2	2	2	6	6	6
Blei im PM ₁₀	IG-L	Stichproben	2				1	1	1	1	1	1	1
Schwermetalle im PM ₁₀	IG-L	Stichproben					1	1	1	1	1	1	1
Benzo(a)pyren	IG-L	Stichproben					2	2	2	2	2	2	2
Benzol	IG-L	Stichproben	2	2	2	2	2	2	2	2	2	2	2
Staubniederschlag	IG-L	Stichproben	2	2	2	2	2	2	2	2	2	2	2
Cd im Staubniederschlag	IG-L	Stichproben	2	2	2	2	2	2	2	2	2	2	2
Pb im Staubniederschlag	IG-L	Stichproben	2	2	2	2	2	2	2	2	2	2	2

Tabelle 1: Anzahl der überwachten Luftschadstoffe in den Messstellen

Eine detaillierte Darstellung der Messausstattung im Wiener Messnetz und der genauen Position der Stationen kann dem Abschnitt 7.3 entnommen werden. Die Namen der Messstellen wurden 2012 überarbeitet, um eine einheitliche Bezeichnung mit Berichten des Umweltbundesamtes zu erreichen. Eine Liste der geänderten Namen ist in Abschnitt 7.4 angegeben.

Die Messstation Rinnböckstraße wurde wegen der geplanten Errichtung eines Bürogebäudes am bisherigen Standort der Messstelle an den Ersatzstandort A23-Wehlistraße im 20. Wiener Gemeindebezirk ab Mitte Oktober 2013 schrittweise verlegt. Daraus ergeben sich Einschränkungen in der Verfügbarkeit einzelner Luftschadstoffkomponenten.

Durch eine Neufassung der IG-L-Messkonzeptverordnung 2012 [2] wurden umfangreiche Neuerungen eingeführt, um der EU-Richtline RL 2008/50/EG [8] zu entsprechen. Unter anderem wurden die Anforderungen an die Messgeräte und die Qualitätssicherung verschärft, die Liste der Trendmessstellen erweitert, die Standortkriterien für die Aufstellung von Messstellen geändert, und die Gebiete in denen IG-L Grenzwerte einzuhalten sind, eingeschränkt.

Durch eine Mitte April 2012 in Kraft getretene Verordnung (IG-L – Winterstreuverordnung [16]), kann bei PM_{10} für die Entscheidung, ob eine Statuserhebung und Programme notwendig sind, die um den Winterdienstanteil reduzierte Belastung herangezogen werden. Die Vorgehensweise dazu ist in der IG-L – Winterstreuverordnung festgelegt. Die Messergebnisse werden sowohl mit als auch ohne Berücksichtigung des Winterdienstanteils im Jahresbericht veröffentlicht.

1.1 Überschreitungen gemäß IG-L

Schwefeldioxid (SO₂)

Im Jahr 2013 wurden der Alarmwert und die Grenzwerte für SO₂ an allen sieben Messstellen eingehalten:

Grenz-/Alarmwert	Überschreitungen	maximaler Messwert
Alarmwert: 500 μg/m³ als MW3	keine	59 μg/m³
Grenzwert: 200 μg/m³ als HMW¹	keine	102 μg/m³
Grenzwert: 120 μg/m³ als TMW	keine	25 μg/m³

Tabelle 2: Überschreitungsübersicht 2013 für Schwefeldioxid (SO₂)

Feinstaub in der Fraktion PM₁₀

An acht der dreizehn PM₁₀-Messstellen wurden Grenzwertüberschreitungen registriert:

Feinstaub PM ₁₀ (13 Messstellen) – Überschreitungen 2013							
Grenzwerte	Anzahl Überschreitungen	Max. TMW	Messstelle	Störfall			
	35 Tage	78 μg/m³	Kendlerstraße	Nein			
	34 Tage	$100 \ \mu g/m^3$	Belgradplatz	Nein			
	31 Tage	139 μg/m³	Gaudenzdorf	Nein			
50 μg/m³ (TMW) ²	31 (30) Tage	88 μg/m³	Liesing-Gewerbegebiet	Nein			
30 μg/Πβ (1 Μ W)	30 (29) Tage	90 μg/m³	Rinnböckstraße	Nein			
	28 (26) Tage	93 μg/m³	Taborstraße	Nein			
	27 Tage	124 μg/m³	Gerichtsgasse	Nein			
	27 Tage	80 μg/m³	Laaer Berg	Nein			
40 μg/m³ (JMW)	keine Überschreitungen (max. JMW: 28 μg/m³)						

Tabelle 3: Überschreitungsübersicht 2013 für Feinstaub in der Fraktion PM₁₀

Die in Klammern "()" angeführten Überschreitungen entsprechen der Zählung nach Abzug des Winterdienstanteils gemäß der IG-L – Winterstreuverordnung [16].

Zur Aufklärung über die Verursacher der Überschreitungen wurde bereits eine Statuserhebung durchgeführt [10], basierend auf den Daten der Jahre 2002 und 2003. Die Ergebnisse daraus sind immer noch gültig.

Feinstaub in der Fraktion PM_{2.5}

Im Jahr 2013 wurden der Grenzwert und der Zielwert für PM_{2,5} an allen sechs Messstellen eingehalten:

Grenz-/Zielwert	Überschreitungen	maximaler Messwert		
Grenzwert ³ : 26,43 μg/m ³ als JMW	keine	19 μg/m³		
Zielwert: 25 μg/m³ als JMW	keine	19 μg/m³		

Tabelle 4: Überschreitungsübersicht 2013 für Feinstaub in der Fraktion PM_{2,5}

¹ Pro Tag dürfen drei Halbstundenmittelwerte (höchstens jedoch 48 pro Kalenderjahr) im Bereich 200 bis 350 μg/m³ liegen, ohne dass der Grenzwert für den SO₂-Halbstundenmittelwert überschritten wird. Über 350 μg/m³ liegt aber in jedem Fall eine Grenzwertüberschreitung vor.

 $^{^2}$ Pro Kalenderjahr dürfen ab dem Jahr 2010 höchstens 25 Tagesmittelwerte über dem Wert von 50 $\mu g/m^3$ liegen.

 $^{^3}$ Gemäß Anlage 1b IG-L idgF [1] ist der Grenzwert für PM_{2.5} von 25 µg/m³ ab dem 1. Jänner 2015 einzuhalten. Die Toleranzmarge von 20% für diesen Grenzwert wird ausgehend vom 11. Juni 2008 am folgenden 1. Jänner und danach alle 12 Monate um einen jährlich gleichbleibenden Prozentsatz bis auf 0% am 1. Jänner 2015 reduziert. Damit ergibt sich für das Jahr 2013 ein PM_{2.5} Grenzwert inklusive Toleranzmarge von gerundet 26,43 µg/m³.

Stickstoffdioxid (NO₂)

An drei von den 17 NO₂-Messstellen wurden Grenzwertüberschreitungen registriert. Tabelle 5 stellt die Überschreitungen der Grenz- und Zielwerte übersichtlich dar:

Stickstoffdioxid (NO ₂) (17 Messstellen) – Überschreitungen 2013						
Alarmwert						
400 μg/m³ (MW3)	400 μg/m³ (MW3) keine Überschreitungen (max. MW3: 163 μg/m³)					
Grenzwerte	Messwert Messstelle Stö.					
$200 \ \mu g/m^3 \ (HMW)$	keine Überschreitungen (max. HMW: 189 μg/m³)					
	51 μg/m³	Hietzinger Kai	Nein			
$35 \mu g/m^3 (JMW)^4$	40 μg/m³	Rinnböckstraße	Nein			
	37 μg/m³	Taborstraße	Nein			
Zielwert						
80 μg/m³ (TMW)	an 3 Messstellen überschritten: Hietzinger Kai (98 μg/m³), Rinnböckstraße (87 μg/m³), Taborstraße (87 μg/m³)					

Tabelle 5: Überschreitungsübersicht 2013 für Stickstoffdioxid (NO₂)

Zur Aufklärung der Verursacher der Überschreitungen bezüglich des Grenzwertes für Jahresmittelwerte wurde bereits eine Statuserhebung durchgeführt [11], basierend auf den Daten der Jahre 2002 und 2003. Die daraus gewonnenen Erkenntnisse sind nach wie vor gültig.

Kohlenmonoxid (CO)

Im Jahr 2013 wurde der Grenzwert für CO an allen vier Messstellen eingehalten:

Grenzwert	Überschreitungen	maximaler Messwert
10 mg/m³ als MW8	keine	1,3 mg/m³

Tabelle 6: Überschreitungsübersicht 2013 für Kohlenmonoxid (CO)

 $^{^4}$ Der JMW-Grenzwert von 35 μ g/m 3 ergibt sich aus dem eigentlichen Grenzwert von 30 μ g/m 3 und einer Toleranzmarge für das Jahr 2013 von 5 μ g/m 3 .

Diskontinuierliche Stichprobenanalysen

Bei den folgenden diskontinuierlich durch Stichprobenanalysen erfassten Schadstoffen wurden alle Grenzwerte bzw. Zielwerte eingehalten (Tabelle 7).

Grenzwertüberschreitungen bei diskontinuierlichen Schadstoffen 2013												
Schadstoff	Anzahl Messstellen	Grenzwert (JMW)	Zielwert (JMW) Maximaler JMW ⁵		Überschreitungen							
Benzol	2	5 μg/m3		$1,3 \mu g/m^3$	keine							
Staubniederschlag	2	210 mg/(m ² d)		156 mg/(m ² d)	keine							
Blei im Staubniederschlag	2	$0,100 \text{ mg/(m}^2\text{d})$		$0.040 \text{ mg/(m}^2\text{d})$	keine							
Kadmium im Staubniederschlag	2	$0,002 \text{ mg/(m}^2\text{d})$		0,0011 mg/(m ² d)	keine							
Blei in PM ₁₀	1	$0.5 \mu g/m^3$		$0,009~\mu g/m^3$	keine							
Arsen in PM ₁₀	1		6 ng/m³	0,7 ng/m³	keine							
Nickel in PM ₁₀	1		20 ng/m³	1,2 ng/m³	keine							
Kadmium in PM ₁₀	1		5 ng/m³	0,2 ng/m³	keine							
Benzo(a)pyren in PM ₁₀	2		1 ng/m ³	0,5 ng/m³	keine							

Tabelle 7: Überschreitungsübersicht 2013 für diskontinuierlich erfasste Schadstoffe

1.2 Überschreitungen gemäß Ozongesetz

In Wien wurden Überschreitungen der Informationsschwelle und des Zielwertes für Ozon registriert. Tabelle 8 gibt einen entsprechenden Überblick.

Ozon (O ₃) (5 Messstellen) – Überschreitungen 2013											
Alarmschwelle	Anzahl Überschreitungen	Maximum	Messstelle								
240 μg/m³ (1MW)	keine Üb	keine Überschreitungen (max. 1MW: 239 μg/m³)									
Informationsschwelle	Anzahl Überschreitungen	Maximum	Messstelle								
	10 (an 4 Tagen)	216 μg/m³	Hermannskogel								
	6 (an 3 Tagen)	$211 \mu g/m^3$	Hohe Warte								
$180~\mu g/m^3 (1MW)$	3 (an 1 Tag)	202 μg/m³	Laaer Berg								
	2 (an 1 Tag)	239 μg/m³	Lobau								
	1	189 μg/m³	Stephansplatz								

Zielwert	
120 μg/m³ (MW8-O)	an allen fünf Messstellen überschritten

Tabelle 8: Überschreitungsübersicht 2013 für Ozon (O₃)

⁵ Der höchste Jahresmittelwert der verschiedenen Messstationen.

2 Allgemeine Informationen

2.1 Gesetzliche Grundlagen

Gemäß Immissionsschutzgesetz-Luft [1] und der zugehörigen Messkonzeptverordnung [2] hat jeder Messnetzbetreiber bis zum 31. Juli des Folgejahres einen Jahresbericht zu veröffentlichen. Gegenwärtig ist daher über die Messwerte der Luftschadstoffe Schwefeldioxid, PM₁₀, PM_{2,5}, Stickstoffdioxid, Kohlenmonoxid, Benzol, Arsen, Kadmium, Nickel, Benzo(a)pyren und über Depositionen von Staubniederschlag, Blei im Staubniederschlag und Kadmium im Staubniederschlag zu berichten. Zusätzlich sind die Jahresmittelwerte der gemessenen Stickstoffoxide für das abgelaufene Kalenderjahr anzugeben.

Der Jahresbericht hat jedenfalls folgende Informationen auszuweisen:

- Jahresmittelwerte für das abgelaufene Kalenderjahr;
- Überschreitungen der Grenz-, Alarm- bzw. Zielwerte, jedenfalls die betroffenen Messstellen, die Höhe und die Häufigkeit der Überschreitung;
- Kenngrößen der eingesetzten Messverfahren;
- Charakterisierungen der Messstellen;
- Berichte über Vorerkundungsmessungen und deren Ergebnisse, insbesondere über dabei festgestellte Überschreitungen;
- ein Vergleich mit den Jahresmittelwerten vorangegangener Jahre;
- Nachweis der Äquivalenz von Messgeräten und Herleitung der Kalibrierfunktion.

Gemäß Ozongesetz [5] kann im Rahmen dieses Jahresberichts auch über die Ozonbelastung des abgelaufenen Jahres berichtet werden. Dabei sind zumindest anzugeben:

- Überschreitungen der Informations- und Alarmschwelle
- Überschreitungen der Zielwerte für Ozon ab dem Jahr 2010
- Überschreitungen der langfristigen Ziele für Ozon für das Jahr 2020

2.2 Grenzwerte, Zielwerte und Alarmwerte gemäß IG-L

Im Immissionsschutzgesetz-Luft sind zum vorsorglichen Schutz der menschlichen Gesundheit Grenzwerte, Zielwerte und Alarmwerte, sowie Vorgaben in Bezug auf PM_{2.5} definiert.

Immissionsgrenzwerte

Immissionsgrenzwerte sind höchst zulässige Immissionsgrenzkonzentrationen. Außer bei Störfällen und anderen in absehbarer Zeit nicht wiederkehrenden Ereignissen sind nach Überschreitungen von Grenzwerten die näheren Umstände der Episode zu untersuchen und gegebenenfalls Maßnahmenpläne und Programme zu erstellen und zu verordnen.

Zielwerte

Zielwerte sind nach Möglichkeit in einem bestimmten Zeitraum zu erreichende Immissionskonzentrationen, die mit dem Ziel festgelegt wurden, die schädlichen Einflüsse auf die menschliche Gesundheit und die Umwelt insgesamt zu vermeiden, zu verhindern oder zu verringern.

Bei Überschreitung der ab 2007 gültigen Zielwerte für Arsen, Kadmium, Nickel und Benzo(a)pyren im PM₁₀ ist die Erstellung einer Statuserhebung notwendig. Die Entscheidung über die Erstellung und Anwendung eines Maßnahmenplans bleibt dem Landeshauptmann vorbehalten. Ab 1. Jänner 2013 gelten die Zielwerte dieser Schadstoffe als Grenzwerte.

Bei Überschreitungen der Zielwerte aller anderen Luftschadstoffe (siehe Abschnitt 2.2.2) ist keine Ursachenanalyse (Statuserhebung) und keine Erarbeitung emissionsmindernder Maßnahmen vorgeschrieben.

Alarmwerte

Bei der Überschreitung von Alarmwerten besteht bei kurzfristiger Exposition eine Gefahr für die menschliche Gesundheit. Die betroffene Bevölkerung ist umgehend zu informieren. Außerdem ist im Alarmfall ein Aktionsplan zur Reduktion der Schadstoffbelastung in Kraft zu setzen.

Vorgaben in Bezug auf PM_{2.5}

Für PM_{2,5} ist im IG-L ein Indikator für die durchschnittliche Exposition (AEI) definiert, wobei § 3a eine Verpflichtung und § 3b ein nationales Ziel festlegt. Der AEI wird anhand der Messdaten mehrerer Messstellen in Österreich im städtischen Hintergrund berechnet und vom Umweltbundesamt im österreichweiten Jahresbericht ausgewiesen. Die Vorgaben zum AEI sind sehr komplex, sie zielen abhängig von der Höhe des AEI und seiner Zusammensetzung auf den Erhalt eines guten PM_{2,5} Niveaus, bzw. andernfalls auf die Reduktion von PM_{2,5} ab.

2.2.1 Grenzwerte

Bei Überschreitung eines Grenzwertes ist festzustellen, ob ein Störfall, ein in absehbarer Zeit nicht wiederkehrendes Ereignis, die Aufwirbelung von Partikeln nach der Ausbringung bestimmter Streugüter im Winterdienst, oder Emissionen aus natürlichen Quellen vorliegen. Ist dies nicht der Fall, muss eine Statuserhebung (im Wesentlichen eine Verursacheranalyse) erstellt werden. In weiterer Folge müssen Programme mit dem Ziel erarbeitet werden, in Zukunft die Vorgaben der EU-RL 2008/50/EG [8] einzuhalten. Eine Übersicht über die Grenzwerte im Jahr 2013 stellt die Tabelle 9 dar.

Übersicht über die im IG-L festgelegten Grenzwerte											
Luftschadstoff	HMW	MW8	TMW	JMW							
Schwefeldioxid (SO ₂)	200 μg/m³ *)		120 μg/m³								
Kohlenmonoxid (CO)		10 mg/m³									
Stickstoffdioxid (NO ₂)	200 μg/m³			35 μg/m³ **)							
PM_{10}			50 μg/m³ ***)	40 μg/m³							
PM _{2,5}				26,43 μg/m³ ****)							
Benzol				5 μg/m³							
Staubniederschlag				210 mg/(m ² d)							
Blei im Staubniederschlag				0,100 mg/(m ² d)							
Kadmium im Staubniederschlag				0,002 mg/(m ² d)							
Blei in PM ₁₀				0,5 μg/m³							
Arsen in PM ₁₀				6 ng/m³ *****)							
Kadmium in PM ₁₀				5 ng/m³ *****)							
Nickel in PM ₁₀				20 ng/m³ *****)							
Benzo(a)pyren in PM ₁₀				1 ng/m³ *****)							

Tabelle 9: Übersicht über die im IG-L für 2013 festgelegten Grenzwerte

- *) Drei HMW pro Tag, jedoch maximal 48 HMW pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
- **) Ab dem Jahr 2012 kann der zuständige Bundesminister auf Grundlage einer Evaluierung der Wirkung des Grenzwertes gegebenenfalls den Grenzwert auf 30 μ g/m³ reduzieren. Das ist im Jahr 2013 nicht erfolgt, der Grenzwert beträgt daher 35 μ g/m³.
- ***) Pro Kalenderjahr sind 25 Überschreitungen zulässig.

****) Der Immissionsgrenzwert (in µg/m³) wird nach folgendem Schema kontinuierlich reduziert:

Jahr:	2008	2009	2010	2011	2012	2013	2014	ab 2015
Grenzwert [µg/m³]:	30	29,29	28,57	27,86	27,14	26,43	25,71	25

Die "unrunden" Grenzwerte ergeben sich aus Anlage 1b des Immissionsschutzgesetzes-Luft.

*****) Die Zielwerte für Arsen, Kadmium, Nickel und Benzo(a)pyren in der PM10-Fraktion dürfen ab dem 31. Dezember 2012 nicht mehr überschritten werden. Ab diesem Zeitpunkt gelten diese Zielwerte als Grenzwerte.

2.2.2 Zielwerte

Mit Ausnahme von NO₂ sind im Fall der Überschreitung der in Tabelle 10 genannten Zielwerte ebenfalls eine Statuserhebung und Programme sinngemäß wie bei Überschreitung eines Grenzwertes zu erstellen.

Übersicht über die im IG-L festgelegten Zielwerte											
Luftschadstoff	TMW	JMW									
Stickstoffdioxid (NO ₂)	80 μg/m³										
PM _{2,5}		25 μg/m³									

Tabelle 10: Übersicht über die im IG-L festgelegten Zielwerte

Die Zielwerte für Arsen, Kadmium, Nickel und Benzo(a)pyren in der PM_{10} -Fraktion dürfen ab dem 31. Dezember 2012 nicht mehr überschritten werden. Ab diesem Zeitpunkt gelten diese Zielwerte als Grenzwerte.

2.2.3 Alarmwerte

Werden Alarmwerte überschritten bzw. deren Überschreitung prognostiziert, so ist umgehend die Öffentlichkeit über den Österreichischen Rundfunk zu informieren. Außerdem ist die kurzfristige In-Kraft-Setzung eines Aktionsplans mit Maßnahmen zur Reduktion der Belastung vorgesehen. In den letzten 25 Jahren wurden die Alarmwerte in Wien nicht überschritten und auch in Zukunft ist eine Überschreitung äußerst unwahrscheinlich. Tabelle 11 gibt Auskunft über die Höhe dieser Alarmwerte.

Übersicht über die im IG-L festgelegten Alarmwerte									
Luftschadstoff	MW3								
Schwefeldioxid (SO ₂)	$500~\mu g/m^3$								
Stickstoffdioxid (NO ₂)	400 μg/m³								

Tabelle 11: Übersicht der im IG-L festgelegten Alarmwerte

2.3 Informationswerte, Zielwerte und Alarmwerte gemäß Ozongesetz

Durch die im Jahr 2003 durchgeführte Novelle BGBl I 34/2003 des Ozongesetzes [5] wurde Ozon aus dem Immissionsschutzgesetz-Luft ausgegliedert. Umfangreiche Änderungen und Neuerungen der Ozongrenzwerte sind vorgenommen worden und seit dem unverändert in Kraft.

2.3.1 Informations- und Warnwerte für Ozon

Im Ozongesetz [5] sind Informations- und Alarmschwellwerte als Einstundenwerte definiert, bei deren Überschreitung an irgendeiner Messstelle im Überwachungsgebiet I Nordostösterreich⁶ die Bevölkerung möglichst rasch zu informieren ist. Tabelle 12 zeigt diese im Überblick.

Übersicht über die Informations- und Alarmschwellwerte von Ozon								
Ozon	1MW							
Informationsschwelle	180 μg/m³							
Alarmschwelle	240 μg/m³							

Tabelle 12: Übersicht der Ozon Informations- und Alarmschwellwerte

Anmerkung: Laut Ozongesetz, Anlage 1, ist die Informationsschwelle ein Wert, bei dessen Überschreitung bei kurzfristiger Exposition ein Risiko für die menschliche Gesundheit für besonders empfindliche Bevölkerungsgruppen besteht. Die Alarmschwelle ist ein Wert, bei dessen Überschreitung bei kurzfristiger Exposition ein Risiko für die menschliche Gesundheit für die Gesamtbevölkerung besteht.

2.3.2 Zielwerte für Ozon

Zielwerte sind auch für Ozon gegeben, wie Tabelle 13 veranschaulicht.

	Ozon Zielwerte: Gesundheits- und Vegetationsschutz											
	MW	Zie	l für 2010 – 2020	Ziel al	2020							
Gesundheitsschutz	MW8-O	120 μg/m³	im Mittel über drei Jahre an nicht mehr als an 25 Tagen pro Jahr zu überschreiten	120 μg/m³	darf nicht überschritten werden							
Vegetationsschutz	AOT40	18 000 μg/m³h	gemittelt über 5 Jahre	6 000 μg/m³h	darf nicht überschritten werden							

Tabelle 13: Ozon Zielwerte bezüglich Gesundheits- und Vegetationsschutz

Der AOT40 ist die Summe der Differenzen zwischen den Konzentrationen über $80~\mu g/m^3$ und $80~\mu g/m^3$ unter ausschließlicher Verwendung der Einstundenmittelwerte (1MW) zwischen 8~und~20~Uhr~MEZ im Zeitraum von Mai bis Juli.

2.4 Berücksichtigung des Winterdienstanteils bei PM₁₀

Durch eine Mitte April 2012 in Kraft getretene Verordnung (IG-L – Winterstreuverordnung [16]), kann bei PM_{10} für die Entscheidung, ob eine Statuserhebung und Programme notwendig sind, die um den Winterdienstanteil reduzierte Belastung herangezogen werden. Die Vorgehensweise dazu ist in der IG-L – Winterstreuverordnung festgelegt. Die Messergebnisse werden sowohl mit als auch ohne Berücksichtigung des Winterdienstanteils im Jahresbericht veröffentlicht.

⁶ Das Ozon-Überwachungsgebiet I Nordostösterreich umfasst Wien, Niederösterreich und das nördliche und mittlere Burgenland.

2.5 Übersiedlung der Trendmessstelle Rinnböckstraße

Am Standort der Messstation Rinnböckstraße ist die Errichtung eines Bürogebäudes geplant. Für diese Trendmessstelle musste daher ein von der Luftschadstoffsituation vergleichbarer Ersatzstandort gefunden werden. Das Wiener Luftmessnetz konnte einen geeigneten Ort an der Adresse Wehlistraße 366 im 20. Wiener Gemeindebezirk durch Vergleichsmessungen identifizieren. Die Messstelle Rinnböckstraße wurde ab Mitte Oktober 2013 an den neuen Standort verlegt. Die neue Messstelle erhält den neuen Namen "A23-Wehlistraße". Auf Grund der schrittweisen Übersiedelung der Messstelleninfrastruktur ergibt sich, dass für die Komponente PM_{2,5} an der Messstelle Rinnböckstraße kein gültiger Jahresmittelwert 2013 gebildet werden kann und dort PM₁₀ gravimetrisch nur bis zum 21. Oktober gemessen wurde. Bei PM₁₀ konnte die Messreihe ersatzweise durch ein äquivalentes kontinuierliches Messverfahren fortgeführt werden, sodass ein gültiger Jahresmittelwert 2013 erstellt werden konnte. Alle anderen Luftschadstoffkomponenten wurden bis Ende 2013 am Standort Rinnböckstraße weitergemessen.

3 Ergebnisse kontinuierlicher Messungen

3.1 Schwefeldioxid (SO₂)

Die Lage der SO₂-Messstellen im Stadtgebiet wird in der nebenstehenden Abbildung (Abbildung 1) dargestellt. Im Jahr 2013 wurden in Wien sieben SO₂-Messstellen gemäß IG-L betrieben. Davon liegt die Messstelle Rinnböckstraße verkehrsbeeinflusst (rotes Dreieck in der nebenstehenden Abbildung), Hermannskogel und Schafberg liegen in Erholungsgebieten (grüne Quadrate), und die übrigen Stationen im bebauten Gebiet mit unterschiedlicher Dichte und Gebäudehöhe.

Die Messungen erfolgten an allen Standorten mit der UV-Fluoreszenz Methode. Das ist die laut Immissionsschutzgesetz-Luft vorgeschriebene Referenzmethode. Detaillierte Informationen über die Standorte des Wiener Luftmessnetzes und deren Messausstattung sind in Abschnitt 7.3 zusammengefasst.

Grenzwertüberschreitungen

Bei Schwefeldioxid sind Grenzwerte für Halbstundenmittelwerte (200 $\mu g/m^3$) und Tagesmittelwerte (120 $\mu g/m^3$) mit Zusatzbedingungen (siehe Abschnitt 2.2) festgelegt. Im Jahr 2013 wurde keiner dieser Grenzwerte überschritten.

Der höchste beobachtete Halbstundenmittelwert betrug $102 \mu g/m^3$ an der Station Kaiser-Ebersdorf und der höchste Tagesmittelwert $25 \mu g/m^3$, ebenfalls an der Station Kaiser-Ebersdorf.

Alarmwertüberschreitungen

Der Alarmwert von 500 $\mu g/m^3$ als Dreistundenmittelwert wurde an allen Messstellen eingehalten. Der höchste beobachtete Dreistundenmittelwert betrug 59 $\mu g/m^3$ an der Station Kaiser-Ebersdorf.

Ergebnisse der Immissionsmessungen

Tabelle 14 zeigt die im Jahr 2013 in Wien gemessenen Schwefeldioxid Monatsmittelwerte in Mikrogramm pro Kubikmeter.

Messstation	Jän	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	WMW	SMW	JMW
1, Stephansplatz	5	6	6	5	3	3	4	5	3	4	2	3	4	4	4
11, Kaiser-Ebersdorf	5	6	5	3	2	3	3	4	5	7	5	3	5	3	4
11, Rinnböckstraße	3	3	2	2	2	2	2	2	2	3	2	2	3	2	2
18, Schafberg	5	6	5	2	1	2	3	4	4	5	5	3	4	3	4
19, Hermannskogel	5	5	4	4	3	3	3	4	4	5	3	4	4	3	4
19, Hohe Warte	4	5	4	3	2	3	4	4	3	4	2	2	3	3	3
22, Stadlau	5	6	4	3	2	3	3	4	4	5	5	3	4	3	4
Wien-Mittel	5	5	4	3	2	3	3	4	4	5	3	3	4	3	4

Legende:

WMW: Wintermittelwert (Okt 2012 bis März 2013)

SMW: Sommermittelwert (Apr bis Sep)
JMW: Jahresmittelwert (Jän bis Dez)
Wien-Mittel: Mittelwert über alle Stationen

Datenverfügbarkeit:

Wert zentriert und standard: Wert kursiv und rechtsbündig:

"A" zentriert:

gemäß IG-L

mehr als 75% Grunddaten verfügbar weniger als 75% Grunddaten verfügbar

Schadstoffentwicklung

Seit Ende der 70er Jahre wurde eine drastische Reduktion der Immissionsbelastung durch Schwefeldioxid in Wien beobachtet. In den letzten Jahren ist die gemittelte Wiener SO₂-Belastung auf sehr niedrigem Niveau geblieben. Die folgende Abbildung (Abbildung 2) zeigt die Jahresmittelwerte von 1997 bis 2013.

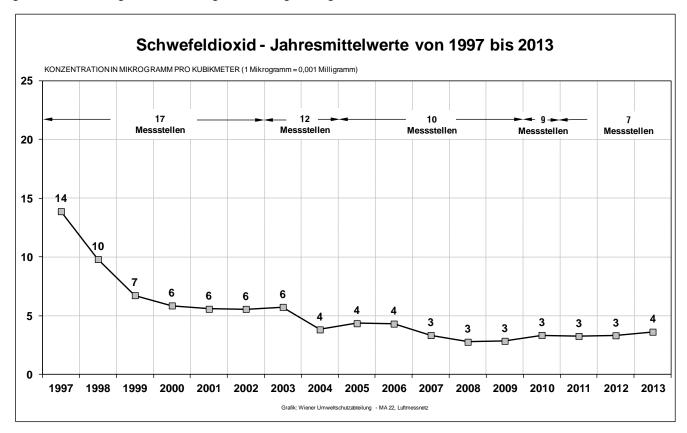



Abbildung 2: Schwefeldioxid Jahresmittelwerte von 1997 bis 2013

3.2 Feinstaub PM₁₀

Die Lage der PM₁₀-Messstellen im Stadtgebiet wird in der Abbildung 3 dargestellt. Im Jahr 2013 wurden in Wien dreizehn PM₁₀-Messstellen gemäß IG-L betrieben. Davon liegt die Messstelle Taborstraße verkehrsnah⁷, die Messstation Rinnböckstraße verkehrsbeeinflusst (rote Dreiecke in der nebenstehenden Abbildung), Schafberg und Lobau liegen in Erholungsgebieten, die vom innerstädtischen Geschehen weitgehend unbeeinflusst sind (grüne Quadrate) und die übrigen Messstellen im bebauten Gebiet mit unterschiedlicher Dichte und Gebäudehöhe. Die Station Liesing-Gewerbegebiet ist in einem Industriegebiet am südlichen Stadtrand situiert.

Detaillierte Informationen über die Standorte des Wiener Luftmessnetzes und deren Messausstattung sind in Abschnitt 7.3 zusammengefasst.

PM₁₀ stellt im Wesentlichen jenen Teil des Gesamtschwebestaubs (TSP) dar, dessen Partikel einen Durchmesser von 10 μm nicht überschreiten.

An den fünf Standorten "Taborstraße", "AKH", "Rinnböckstraße", "Stadlau" und "Liesing-Gewerbegebiet" wurde mit einem gravimetrischen Verfahren gemessen. An den anderen Standorten wurde mit einer kontinuierlichen Methode gemessen, die äquivalent zum Referenzverfahren gemäß EU-Richtlinie RL 2008/50/EG ist und automatisch Messwerte als Halbstundenmittelwerte liefert. Diese kontinuierlichen Messgeräte wurden schrittweise von einem Messverfahren, das auf Absorption von Betastrahlen basiert (Eberline FH62 I/R), auf ein Verfahren, das mit Partikelzählung arbeitet (Grimm EDM-180), umgestellt. Detaillierte Informationen zu dem Nachweis der Äquivalenz, den eingesetzten Kalibrierfunktionen und dem Zeitplan der Geräteumstellung sind in Kapitel 6 und Kapitel 7.7 angegeben.

Am Standort der Messstation Rinnböckstraße hat das Wiener Luftmessnetz PM₁₀ bis 21. Oktober 2013 gravimetrisch bestimmt, anschließend mit einem äquivalenten kontinuierlichen Verfahren. Da dort ein Bürogebäude errichtet wird, wurde die Messstelle ab Mitte Oktober schrittweise an den neuen Standort A23-Wehlistraße übersiedelt, Insbesondere die Messgeräte zur gravimetrischen Feinstaubmessung und der dafür notwendige Messstellencontainer wurden Mitte Oktober abgebaut.

Grenzwertüberschreitungen

Der humanhygienische Grenzwert für Feinstaub PM_{10} ist mit 50 $\mu g/m^3$ als Tagesmittelwert festgelegt, wobei es jedoch zulässig ist, diesen Grenzwert an bis zu 25 Tagen pro Jahr zu überschreiten. Ein weiterer Grenzwert ist als Jahresmittelwert in der Höhe von 40 $\mu g/m^3$ definiert.

Mehr als 25 Überschreitungstage wurden im Jahr 2013 an acht Stationen gezählt. Der Jahresmittelwert von $40 \mu g/m^3$ wurde an keiner Station überschritten (siehe Tabelle 15).

⁷ Verkehrsnah: Die Probenahme liegt in einer Entfernung von höchstens 10 m vom Fahrbahnrand.

PM_{10}	<u>Taborstraße</u>	AKH	Belgradplatz	Laaer Berg	Kaiser-Ebersdorf	Rinnböckstraße	Gaudenzdorf	Kendlerstraße	Schafberg	Gerichtsgasse	Lobau	<u>Stadlau</u>	<u>Liesing-</u> Gewerbegebiet
JMW [μg/m³]	26	24	27	25	24	27	27	27	22	26	22	25	28
Überschreitungstage 2013	28	24	34	27	19	30	31	35	15	27	17	24	31
Überschreitungstage 2013 nach Abzug des Winterdienstanteils	26	23	34	27	19	29	31	35	15	27	17	22	30

Tabelle 15: PM_{10} -Jahresmittelwerte und Anzahl der Tage mit $TMW > 50~\mu g/m^3$ im Jahr 2013

Die Ergebnisse der Standorte mit **unterstrichenen Stationsnamen** wurden **gravimetrisch** ermittelt, an allen anderen Standorten wurden sie mit einem äquivalenten kontinuierlichen Messverfahren gewonnen.

Gemäß der Mitte April 2012 in Kraft getretenen IG-L – Winterstreuverordnung [16] kann der Anteil des Winterdienstes an der PM_{10} -Belastung berücksichtigt werden. Einzelne Überschreitungstage sind im Jahr 2013 auf Streu- bzw. Feuchtsalzanteile im PM_{10} zurückzuführen. Die nach Abzug dieser Anteile reduzierten Überschreitungstage sind in der obigen Tabelle ebenfalls angeführt.

Es folgt Tabelle 16 mit einem detaillierten Aufschluss aller Tagesmittelwerte, an denen der PM_{10} -Grenzwert von 50 $\mu g/m^3$ im Zeitraum vom 1. Jänner 2013 bis 31. Dezember 2013 überschritten wurde. Bei Werten in Klammern "()" wurde der durch den Winterdienst verursachte PM_{10} -Anteil abgezogen.

	PM_{10}	<u>Taborstraße</u>	AKH	Belgradplatz	Laaer Berg	Kaiser-Ebersdorf	Rinnböckstraße	Gaudenzdorf	Kendlerstraße	Schafberg	Gerichtsgasse	Lobau	Stadlau	<u>Liesing-</u> <u>Gewerbegebiet</u>
Nr	Datum						TMV	$V > 50 \mu$	ıg/m³					
1	01.01.2013	93	70	100	65	-	89	139	77	101	124	-	65	88
2	08.01.2013	-	-	-	54	-	-	-	-	-	-	-	-	-
3	20.01.2013	71	67	76	71	66	74	77	70	-	-	66	65	73
4	21.01.2013	54	53	58	57	53	61	56	57	-	-	52	59	52
5	23.01.2013	68	65	61	64	58	64	64	63	62	66	57	63	60
6	24.01.2013	69	64	63	64	64	73	66	59	52	72	68	77	61
7	25.01.2013	74	73	73	72	67	73	76	74	68	76	67	74	68
8	26.01.2013	-	-	-	51	-	-	51	52	-	-	-	-	-
9	27.01.2013	81	73	72	75	75	76	73	74	68	89	70	84	72
10	28.01.2013	84	82	78	77	95	90	85	78	66	95	85	106	82
11	13.02.2013	52	-	52	52	-	53	54	52	-	53	-	-	57
12	14.02.2013	51 (50)	-	52	51	-	54	57	-	-	54	-	54	-

<u>Seit</u>	e 14			IG-	L Jahre	sberich	t Wien	2013						
	PM_{10}	Taborstraße	AKH	Belgradplatz	Laaer Berg	Kaiser-Ebersdorf	Rinnböckstraße	Gaudenzdorf	Kendlerstraße	Schafberg	Gerichtsgasse	Lobau	Stadlau	Liesing- Gewerbegebiet
Nr	Datum						TMV	$V > 50 \mu$	ıg/m³					
13	15.02.2013	74	72	67	66	62	73	78	67	72	78	55	74	69
14	16.02.2013	55	55	51	-	-	57	56	53	51	63	-	60	-
15	17.02.2013	-	-	-	-	-	-	51	-	-	-	-	-	-
16	18.02.2013	66	62	68	80	62	61	65	64	-	63	55	65	55
17	22.02.2013	69	66	68	69	65	75	72	67	60	69	63	72	61
18	23.02.2013	58	55	60	60	60	64	66	58	-	64	55	60	58
19	24.02.2013	60	55	58	58	56	65	64	55	-	65	56	62	52
20	25.02.2013	62	58	64	63	57	69	72	60	52	65	52 (50)	63	62
21	26.02.2013	ı	ı	ı	ı	ı	52 (50)	ı	ı	ı	1	-	51 (50)	-
22	28.02.2013	65	60	66	73	61	63	64	63	52	62	53	60	56
23	06.03.2013	-	-	-	-	-	-	-	-	-	-	-	-	51 (50)
24	09.03.2013	60	59	65	65	60	61	70	61	53	62	54	58	-
25	12.03.2013	54	52	66	68	57	53	64	60	-	56	56	51	-
26	13.03.2013	67	59	60	69	68	70	65	57	55	70	67	70	54
27	30.03.2013	-	-	-	-	-	-	53	-	-	-	-	-	-
28	02.04.2013	-	-	-	52	-	-	-	-	-	-	-	-	-
29	09.04.2013	ı	ı	ı	-	-	1	1	-	1	1	-	ı	55
30	12.04.2013	ı	ı	ı	-	-	ı	ı	-	ı	ı	-	ı	51
31	17.04.2013	-	-	61	-	-	-	-	51	-	-	-	-	64
32	21.04.2013	-	-	60	55	52	-	57	56	54	57	-	-	-
33	22.04.2013	-	-	57	-	-	-	51	59	-	54	-	-	-
34	23.04.2013	ı	-	55	-	-	-	-	-	-	-	=	-	-
35	24.04.2013	1	1	53	-	-	1	1	58	1	1	-	1	-
36	25.04.2013	ı	-	54	-	-	-	-	-	-	-	=	-	55
37	26.04.2013	-	-	-	-	-	-	-	52	-	-	-	-	71
38	27.04.2013	ı	-	53	-	-	-	-	60	-	53	-	-	-
39	30.04.2013	-	-	64	-	-	-	-	55	-	-	-	-	-
40	01.05.2013	-	-	54	-	-	-	51	-	-	-	-	-	-
41	02.05.2013	-	-	54	-	-	52	53	52	-	53	-	-	-
42	18.06.2013	-	-	-	-	-	-	-	-	-	-	-	-	55
43	19.06.2013	-	-	-	-	-	-	-	-	-	-	-	-	54
44	06.10.2013	56	56	52	52	-	52	53	54	52	55	-	-	62

	PM_{10}	<u>Taborstraße</u>	AKH	Belgradplatz	Laaer Berg	Kaiser-Ebersdorf	Rinnböckstraße	Gaudenzdorf	Kendlerstraße	Schafberg	Gerichtsgasse	Lobau	Stadlau	<u>Liesing-</u> Gewerbegebiet
Nr	Datum						TMV	$V > 50 \mu$	ıg/m³					
45	07.10.2013	52	-	-	-	-	-	52	-	-	-	-	-	58
46	08.10.2013	-	-	-	-	-	-	-	54	-	-	-	-	-
47	09.10.2013	57	51	70	55	54	53	53	60	-	58	-	52	57
48	10.10.2013	-	-	53	-	-	-	-	-	-	-	-	-	-
49	21.10.2013	57	-	-	-	-	-	-	58	-	-	-	-	60
50	08.11.2013	-	-	-	-	-	-	-	-	-	-	-	-	61
51	15.11.2013	-	-	-	-	-	53	-	-	-	-	-	-	-
52	16.11.2013	51 (50)	52	-	-	-	54	-	-	-	-	-	51 (50)	-
53	18.11.2013	-	-	-	-	-	51	-	-	-	-	-	-	-
54	19.11.2013	57	51	-	52	-	62	-	51	-	53	-	53	53
55	04.12.2013	52	51 (50)	-	-	-	-	-	52	-	54	-	-	-
56	20.12.2013	-	-	-	-	-	57	-	-	-	-	-	-	-

Tabelle 16: Feinstaub PM_{10} Überschreitungstage und -werte

Die Überschreitungen sind weder auf einen Störfall noch auf eine andere in absehbarer Zeit nicht wiederkehrende erhöhte Immission zurückzuführen. Eine Statuserhebung für PM_{10} -Überschreitungen wurde bereits durchgeführt [10]. Die daraus gewonnenen Erkenntnisse sind nach wie vor gültig.

Ergebnisse der Immissionsmessungen

Die nachstehende Tabelle (Tabelle 17) dokumentiert die Langzeitbelastung durch Feinstaub- PM_{10} an den Wiener Messstellen anhand von Monats- und Jahresmittelwerten. Die Mittelwerte werden in Mikrogramm pro Kubikmeter angegeben.

		Feins	staub	(PM ₁₀) Moi	natsm	ittelw	erte ir	n Jah	r 2 013	}				
	Jän	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	WMW	SMW	JMW
2, Taborstraße	37	37	34	31	16	16	20	21	15	30	25	25	33	20	26
9, AKH	34	35	31	29	15	16	19	20	14	26	23	22	31	19	24
10, Belgradplatz	36	38	37	40	20	17	24	23	17	29	24	24	34	23	27
10, Laaer Berg	36	40	37	33	17	15	18	20	13	26	24	25	34	19	25
11, Kaiser-Ebersdorf	34	34	34	32	15	11	22	21	14	26	23	24	30	19	24
11, Rinnböckstraße	38	40	34	32	17	19	24	22	16	29	29	27	34	22	27
12, Gaudenzdorf	39	40	37	36	19	16	20	22	16	28	24	24	35	21	27
16, Kendlerstraße	36	37	36	39	20	16	20	21	15	29	25	26	34	22	27
18, Schafberg	31	31	29	30	16	14	16	19	13	24	21	22	28	18	22
21, Gerichtsgasse	39	39	35	36	18	15	17	22	15	30	26	26	35	21	26
22, Lobau	33	33	31	29	16	13	16	17	11	23	21	22	29	17	22

22, Stadlau	37	38	32	30	16	16	21	21	14	26	23	22	33	20	25
23, Liesing-Gewerbegebiet	35	35	34	40	19	20	25	25	19	33	30	22	32	25	28
Wien-Mittel	36	37	34	34	17	16	20	21	15	28	24	24	32	20	25

Legende:

WMW: Wintermittelwert (Okt 2012 bis März 2013)

SMW: Sommermittelwert (Apr bis Sep)
JMW: Jahresmittelwert (Jän bis Dez)
Wien-Mittel: Mittelwert über alle Stationen

Datenverfügbarkeit:

Wert zentriert und standard: gemäß IG-L

Wert kursiv und rechtsbündig: mehr als 75% Grunddaten verfügbar "A" zentriert: weniger als 75% Grunddaten verfügbar

Tabelle 17: Feinstaub PM₁₀ Monatsmittelwerte im Jahr 2013

Der maximale Tagesmittelwert des Jahres 2013 beträgt 139 μ g/m³ und wurde am 1. Jänner an der Messstelle Gaudenzdorf registriert. Das Maximum des Vorjahres 2012 betrug 154 μ g/m³ an der Station Gerichtsgasse.

Die Jahresmittelwerte des Jahres 2013 liegen zwischen 22 $\mu g/m^3$ (Lobau und Schafberg) und 28 $\mu g/m^3$ (Liesing-Gewerbegebiet). Die Jahresmittelwerte des Vorjahres lagen zwischen 20 $\mu g/m^3$ (Lobau) und 27 $\mu g/m^3$ (Belgradplatz, Gerichtsgasse und Liesing-Gewerbegebiet).

Eine monatlich zusammengefasste Darstellung der Anzahl der Tage mit Überschreitungen des PM₁₀-Grenzwertes bietet die folgende Tabelle (Tabelle 18).

	Üŀ	oerscl	ıreitui	ngen (des PN	M ₁₀ G	renz	werte	s per	Mona	nt				
	Jän	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	Win	Som	Jahr
2, Taborstraße	8	10	3	0	0	0	0	0	0	4	2	1	32	0	28
9, AKH	8	8	3	0	0	0	0	0	0	2	2	1	28	0	24
10, Belgradplatz	8	10	3	8	2	0	0	0	0	3	0	0	31	10	34
10, Laaer Berg	10	9	3	2	0	0	0	0	0	2	1	0	33	2	27
11, Kaiser-Ebersdorf	7	7	3	1	0	0	0	0	0	1	0	0	20	1	19
11, Rinnböckstraße	8	11	3	0	1	0	0	0	0	2	4	1	31	1	30
12, Gaudenzdorf	9	11	4	2	2	0	0	0	0	3	0	0	37	4	31
16, Kendlerstraße	9	9	3	7	1	0	0	0	0	4	1	1	28	8	35
18, Schafberg	6	5	2	1	0	0	0	0	0	1	0	0	17	1	15
21, Gerichtsgasse	6	10	3	3	1	0	0	0	0	2	1	1	33	4	27
22, Lobau	7	7	3	0	0	0	0	0	0	0	0	0	19	0	17
22, Stadlau	8	10	3	0	0	0	0	0	0	1	2	0	32	0	24
23, Liesing-Gewerbegebiet	8	8	2	5	0	2	0	0	0	4	2	0	26	7	31
Wien-gesamt	10	12	5	12	2	2	0	0	0	6	5	2	40	21	56

Legende:

Win: Winter (Okt 2012 bis März 2013) Som: Sommer (Apr bis Sep)

Jahr: Jän bis Dez

Wien-gesamt: Überschreitungen über alle Stationen

Datenverfügbarkeit:

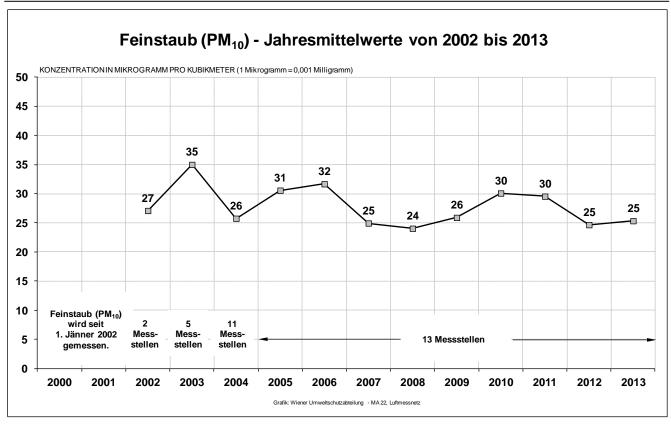
Wert zentriert und standard: gemäß IG-L

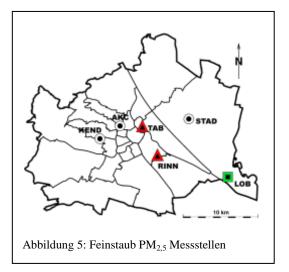
Wert kursiv und rechtsbündig: mehr als 75% Grunddaten verfügbar "A" zentriert: weniger als 75% Grunddaten verfügbar

Tabelle 18: Anzahl der Tage mit PM₁₀ Überschreitungen im Jahr 2013

Schadstoffentwicklung

PM₁₀-Messungen werden vom Wiener Luftmessnetz seit Jänner 2002 durchgeführt. Langzeitlich betrachtet ist kein eindeutiger Trend der Belastung im Wiener Stadtgebiet zu erkennen. Insbesondere die starke Abhängigkeit der PM₁₀-Konzentration von der Winterwitterung erschwert eine Trendabschätzung. Abbildung 4 gibt einen Überblick über die Jahresmittelwerte von 2002 bis 2013.




Abbildung 4: Feinstaub PM₁₀ Jahresmittelwerte von 2002 bis 2013

3.3 Feinstaub PM_{2.5}

Die Lage der $PM_{2,5}$ -Messstellen im Stadtgebiet wird in der nebenstehenden Abbildung (Abbildung 5) dargestellt. Im Jahr 2013 wurden in Wien sechs $PM_{2,5}$ -Messstellen gemäß IG-L betrieben. Davon liegen die Messstellen Rinnböckstraße und Taborstraße verkehrsnah⁸ (rote Dreiecke in der nebenstehenden Abbildung), die Lobau in einem Erholungsgebiet und die restlichen Messstellen im zentralen Stadtgebiet. Nähere Informationen über die Standorte des Wiener Luftmessnetzes und deren Messausstattung sind in Abschnitt 7.3 zusammengefasst. $PM_{2,5}$ stellt im Wesentlichen jenen Teil von PM_{10} dar, dessen Partikel einen Durchmesser von 2,5 µm nicht überschreiten.

An allen Messstellen wurde mit einem gravimetrischen Verfahren gemessen. Zur tagesaktuellen Berichterstattung wurden an allen sechs Messstellen zusätzlich kontinuierliche Messgeräte (Grimm EDM-180), die mit Partikelzählung arbeiten, betrieben.

Detaillierte Informationen zur Äquivalenz dieser Geräte zum Referenzverfahren und den eingesetzten Kalibrierfunktionen sind in Kapitel 6 bzw. im Kapitel 7.7 angegeben. Auf Grund der geplanten Errichtung eines Bürogebäudes muss die Messstelle Rinnböckstraße eingestellt werden. Ersatz ist die neue Messstelle "A23-Wehlistraße", die ab dem Jahr 2014 den Messbetrieb aufnimmt. Die Messreihe für PM_{2,5} am Standort Rinnböckstraße endet wegen der notwendigen Übersiedelungsarbeiten am 21. Oktober 2013.

Grenzwertüberschreitungen

Durch die im August 2010 in Kraft getretene Novelle des IG-L (BGBl. I Nr. 77/2010) wurde ein Grenzwert für $PM_{2,5}$ eingeführt, der nach einem festgelegten Schema auf 25 $\mu g/m^3$ bis 1. Jänner 2015 reduziert wird (siehe Abschnitt 2.2.1 "Grenzwerte"). Nach diesem Schema beträgt der Grenzwert für das Jahr 2013 gerundet 26,43 $\mu g/m^3$ als Jahresmittelwert. Im Jahr 2013 wurde dieser Grenzwert an keiner Messstelle überschritten. Der höchste beobachtete Jahresmittelwert beträgt 19 $\mu g/m^3$ an den Messstellen Taborstraße und Stadlau.

Zielwertüberschreitungen

Durch die im August 2010 in Kraft getretene Novelle des IG-L (BGBl. I Nr. 77/2010) wurde ein Zielwert von $25 \mu g/m^3$ als Jahresmittelwert für $PM_{2.5}$ eingeführt. Dieser Zielwert wurde an allen Messstellen eingehalten.

Ergebnisse der Immissionsmessung

Die folgende Tabelle (Tabelle 19) zeigt die Wiener $PM_{2,5}$ Monats- und Jahresmittelwerte des Jahres 2013. Die Werte sind in Mikrogramm pro Kubikmeter angegeben.

	Jän	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	WMW	SMW	JMW
2, Taborstraße	33	32	27	23	11	12	14	15	10	20	19	19	27	14	19
9, AKH	29	30	24	21	10	11	13	13	9	18	18	18	25	13	18
11, Rinnböckstraße	31	32	26	21	10	11	14	14	9	20	A	A	26	13	19
16, Kendlerstraße	29	30	25	22	10	11	13	14	9	18	17	17	24	13	18
22, Lobau	28	27	23	19	8	9	11	11	6	13	14	15	22	10	15
22, Stadlau	33	33	26	22	10	11	14	14	9	18	18	17	27	13	19
Wien-Mittel	30	31	25	21	10	11	13	13	9	17	17	17	25	13	18

Legende:

WMW: Wintermittelwert (Okt 2012 bis März 2013)

SMW: Sommermittelwert (Apr bis Sep)
JMW: Jahresmittelwert (Jän bis Dez)
Wien-Mittel: Mittelwert über alle Stationen

Datenverfügbarkeit:

Wert zentriert und standard: gemäß IG-L

Wert kursiv und rechtsbündig: mehr als 75% G "A" zentriert: weniger als 75%

mehr als 75% Grunddaten verfügbar weniger als 75% Grunddaten verfügbar

Tabelle 19: Feinstaub PM_{2,5} Monatsmittelwerte im Jahr 2013

⁸ Verkehrsnah: Die Probenahme liegt in einer Entfernung von höchstens 10 m vom Fahrbahnrand.

Wegen der Übersiedelung der Messstelle sind ab 22. Oktober keine PM_{2,5}-Messwerte der Station Rinnböckstraße verfügbar. Dadurch sinkt die notwendige Verfügbarkeit der Messwerte für den Wintermittelwert unter 75%, wodurch kein gültiger Jahresmittelwert gebildet werden kann.

Die Jahresmittelwerte betragen im Jahr 2013 zwischen 15 μ g/m³ (Station Lobau) und 19 μ g/m³ (Stationen Taborstraße und Stadlau). Der höchste Tagesmittelwert beträgt 97 μ g/m³ und wurde am 29. Jänner 2013 an der Messstelle Stadlau registriert. Das im Vorjahr gemessene Maximum beträgt 111 μ g/m³ (1. 1. 2012, Messstelle Stadlau).

Schadstoffentwicklung

PM_{2,5}-Messungen werden vom Wiener Luftmessnetz seit Jänner 2003 durchgeführt. Ein eindeutiger Trend der Belastung im Wiener Stadtgebiet ist aus dem Verlauf der Jahresmittelwerte nicht zu erkennen (Abbildung 6).

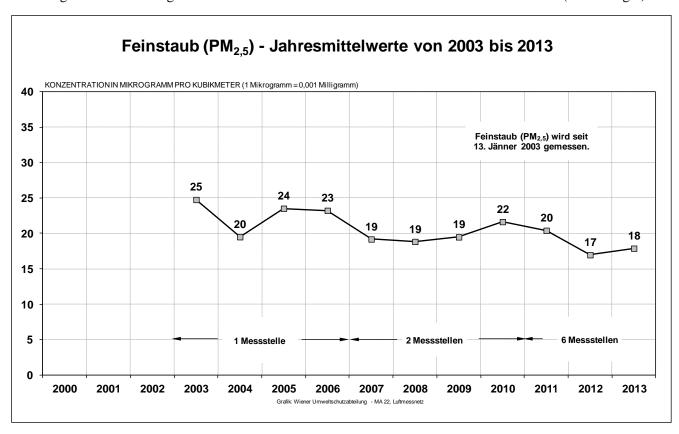


Abbildung 6: PM_{2,5} Jahresmittelwerte von 2003 bis 2013

Insbesondere die starke Abhängigkeit der $PM_{2,5}$ -Konzentration von der Winterwitterung erschwert generell eine Trendabschätzung.

3.4 Stickstoffdioxid (NO₂)

Die Lage der NO₂-Messstellen im Stadtgebiet wird in der nebenstehenden Abbildung (Abbildung 7) dargestellt. Im Jahr 2013 wurden in Wien siebzehn NO₂-Messstellen gemäß IG-L betrieben. Davon liegen die Messstellen Taborstraße und Hitzinger Kai verkehrsnah⁹ und die Stelle Rinnböckstraße verkehrsbeeinflusst (rote Dreiecke in der nebenstehenden Abbildung). Hermannskogel, Schafberg und Lobau liegen in Erholungsgebieten, die vom innerstädtischen Geschehen weitgehend unbeeinflusst sind (grüne Quadrate). Die Station Liesing-Gewerbegebiet ist in einem Industriegebiet am südlichen Stadtrand situiert, und die übrigen Stationen liegen im bebauten Gebiet mit unterschiedlicher Dichte und Gebäudehöhe.

Detaillierte Informationen über die Standorte des Wiener Luftmessnetzes und deren Messausstattung sind in Abschnitt 7.3 zusammengefasst.

Die Messstelle Hietzinger Kai liegt 3 m vom Fahrbahnrand entfernt an einer Haupteinfallstraße Wiens mit einem durchschnittlichen täglichen Verkehrsaufkommen (DTV) von ca. 33000 Kraftfahrzeugen stadteinwärts (Verkehrszählung 2010). In der Taborstraße (DTV 15000) befindet sich die Messstelle ca. 5 m vom Fahrbahnrand entfernt und in der Rinnböckstraße wird ca. 120 m südöstlich der extrem verkehrsbelasteten Südosttangente (DTV 186000) gemessen.

 NO_2 entsteht aus dem primär gebildeten NO durch Oxidation, wird aber zunehmend auch direkt emittiert, vor allem durch moderne Dieselkraftfahrzeuge. Ozon (O_3) spielt als Oxidationsmittel eine wesentliche Rolle bei der Umwandlung von NO zu NO_2 . Die Summe der Stickstoffoxide NO und NO_2 wird als NO_x (Stickstoffoxide) bezeichnet und als Masse NO_2 berechnet.

Alarmwertüberschreitungen

Der **Alarmwert** von 400 μ g/m³ als Dreistundenmittelwert wurde an allen Messstellen **eingehalten**. Der höchste beobachtete Dreistundenmittelwert betrug 163 μ g/m³ an der Station Hietzinger Kai.

Grenzwertüberschreitungen

Im Jahr 2012 wurden humanhygienische Grenzwerte an den Stationen Hietzinger Kai, Rinnböckstraße und Taborstraße überschritten. Tabelle 20 zeigt eine Zusammenfassung dieser Überschreitungen.

St	cickstoffdioxid (NO ₂) (17 Me	ssstellen) – Übersch	reitungen 2013	
Grenzwerte	Anzahl Überschreitungen	Maximum	Messstelle	Störfall
200 μg/m³ (HMW)	keine	189 μg/m³	Rinnböckstraße	nein
Grenzwerte	Maximun	ı	Messstelle	Störfall
35 μg/m³ (JMW) ¹⁰	51 μg/m ²	3	Hietzinger Kai	nein
	40 μg/m ²	3	Rinnböckstraße	nein
	37 μg/m ²	3	Taborstraße	nein

Tabelle 20: Stickstoffdioxid Grenzwertüberschreitungen in Wien im Jahr 2013

An der Messstelle **Hietzinger Kai** wurde ein Jahresmittelwert von **51 \mug/m³** gemessen. Maximal zulässig sind 35 μ g/m³! Dieser Grenzwert wurde außerdem an der Station **Rinnböckstraße** mit **40 \mug/m³** und an der Station **Taborstraße** mit **37 \mug/m³** überschritten.

⁹ Verkehrsnah: Die Probenahme liegt in einer Entfernung von höchstens 10 m vom Fahrbahnrand.

¹⁰ Der JMW-Grenzwert von 35 µg/m³ ergibt sich aus dem eigentlichen Grenzwert von 30 µg/m³ und einer Toleranzmarge für das Jahr 2013 von 5 µg/m³.

Auf Grund von Überschreitungen des Grenzwertes plus Toleranzmarge für den Jahresmittelwert wurde bereits eine Statuserhebung erstellt und im Jahr 2005 veröffentlicht [11]. Die Ergebnisse dieser Statuserhebung sind nach wie vor auf alle vorliegenden Grenzwertüberschreitungen des Jahresmittelwertes anwendbar.

Beim Grenzwert für den Halbstundenmittelwert (200 μ g/m³) wurden keine Überschreitungen festgestellt. Der maximale Halbstundenmittelwert des Jahres 2013 betrug 189 μ g/m³ an der Station Hietzinger Kai, im Vorjahr wurden 200 μ g/m³ als höchste Konzentration gemessen (Station Gaudenzdorf).

Zielwertüberschreitungen

Im Jahr 2013 wurden bei Stickstoffdioxid an 32 Tagen 36 Tagesmittelwerte mit einem Messwert größer als $80~\mu g/m^3$ festgestellt. Im Jahr 2012 waren es 49 Tagesmittelwerte an 42 Tagen. Betroffen sind die verkehrsnahen Standorte Hietzinger Kai und Taborstraße, sowie die Station Rinnböckstraße. Tabelle 21 gibt einen entsprechenden Überblick.

	Stickstof	fdioxid - Zielwertübers Zielwert: 80 µg/m		(essstellen)	
Tage > Zielwert	Maximum	Messstelle	Tage > Zielwert	Maximum	Messstelle
32 Tage	98 μg/m³	Hietzinger Kai	1 Tag	87 μg/m³	Taborstraße
3 Tage	87 μg/m³	Rinnböckstraße			

Tabelle 21: Stickstoffdioxid Zielwertüberschreitungen in Wien im Jahr 2013

Ergebnisse der Immissionsmessungen

Eine Jahresübersicht der NO₂-Messergebnisse aller Wiener Messstellen, angegeben in Mikrogramm pro Kubikmeter, bietet die folgende Tabelle (Tabelle 22).

Jahresübe	rsicht	über	die St	icksto	offdiox	aid (N	O ₂) Ja	ahres-	und 1	Mona	tsmitt	telwer	te		
	Jän	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	WMW	SMW	JMW
1, Stephansplatz	34	34	29	30	17	18	20	23	22	33	29	29	33	22	27
2, Taborstraße	41	43	41	45	29	29	31	36	33	46	37	37	42	34	37
9, AKH	34	36	29	27	15	15	16	20	21	32	29	31	34	19	25
10, Belgradplatz	39	42	36	36	21	22	23	28	29	38	34	32	38	26	32
10, Laaer Berg	36	41	30	32	17	20	24	27	27	34	30	27	34	24	29
11, Kaiser-Ebersdorf	34	38	29	30	18	20	25	27	22	31	28	25	33	24	27
11, Rinnböckstraße	46	52	42	44	27	35	40	45	37	43	39	34	45	38	40
12, Gaudenzdorf	38	38	35	36	22	21	24	27	26	37	34	32	37	26	31
13, Hietzinger Kai	55	57	58	62	46	40	42	50	47	58	49	49	59	48	51
16, Kendlerstraße	30	29	25	30	16	12	13	23	24	34	29	29	31	20	24
18, Schafberg	23	20	18	16	10	8	9	12	12	22	19	21	22	11	16
19, Hermannskogel	21	17	15	13	7	4	3	6	7	14	15	18	18	7	12
19, Hohe Warte	28	26	23	23	14	11	12	16	16	28	24	27	27	15	21
21, Gerichtsgasse	31	33	26	31	18	18	20	24	24	35	32	31	31	23	27

22, Lobau	24	23	15	17	9	8	8	10	12	15	18	19	20	11	15
22, Stadlau	34	39	27	31	18	21	22	25	24	32	30	27	32	23	27
23, Liesing-Gewerbegebiet	35	37	32	31	20	15	18	22	23	34	30	30	35	21	27
Wien-Mittel	34	36	30	31	19	19	21	25	24	33	30	29	34	23	28

Legende:

WMW: Wintermittelwert (Okt 2012 bis März 2013)

SMW: Sommermittelwert (Apr bis Sep)
JMW: Jahresmittelwert (Jän bis Dez)
Wien-Mittel: Mittelwert über alle Stationen

Datenverfügbarkeit:

Wert zentriert und standard: gemäß IG-L

Wert kursiv und rechtsbündig: mehr als 75% Grunddaten verfügbar "A" zentriert: weniger als 75% Grunddaten verfügbar

Tabelle 22: Stickstoffdioxid Monatsmittelwerte in Wien im Jahr 2013

Eine Jahresübersicht der NO_X -Messergebnisse aller Wiener Messstellen, angegeben in Mikrogramm pro Kubikmeter, bietet die folgende Tabelle (Tabelle 23).

Jahresüber	sicht	über	die St	icksto	offoxi	d (NC	O _X) Ja	hres-	und 1	Mona	tsmit	telwe	rte		
	Jän	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	WMW	SMW	JMW
1, Stephansplatz	48	42	37	36	20	22	23	26	28	53	45	47	47	26	35
2, Taborstraße	75	68	66	68	46	41	42	49	55	102	79	85	82	50	65
9, AKH	54	49	40	39	21	20	21	26	32	58	52	54	55	27	39
10, Belgradplatz	64	60	53	52	31	29	29	36	44	76	65	67	66	37	50
10, Laaer Berg	56	59	43	43	24	28	32	36	41	61	53	49	56	34	44
11, Kaiser-Ebersdorf	51	53	39	39	23	26	32	36	34	63	52	43	51	32	41
11, Rinnböckstraße	81	80	64	63	39	50	53	64	62	95	79	65	83	55	66
12, Gaudenzdorf	64	56	51	50	30	29	31	33	37	74	63	62	63	35	48
13, Hietzinger Kai	139	124	120	123	96	75	73	91	108	181	151	169	153	94	121
16, Kendlerstraße	54	48	39	46	27	23	21	32	40	72	56	63	58	31	43
18, Schafberg	31	24	22	20	12	10	12	14	15	30	29	35	30	14	21
19, Hermannskogel	23	18	16	14	9	5	4	7	8	17	17	24	21	8	14
19, Hohe Warte	38	32	27	29	17	14	15	19	21	46	39	43	40	19	28
21, Gerichtsgasse	49	45	34	41	22	23	23	30	34	65	54	53	50	29	40
22, Lobau	28	25	17	19	11	10	10	12	14	22	23	23	24	13	18
22, Stadlau	55	56	38	42	24	30	28	32	37	62	53	42	53	32	42
23, Liesing-Gewerbegebiet	64	63	49	52	32	25	28	34	42	84	70	70	70	35	51
Wien-Mittel	57	53	44	46	28	27	28	34	38	68	58	59	59	34	45

Legende:

WMW: Wintermittelwert (Okt 2012 bis März 2013)

SMW: Sommermittelwert (Apr bis Sep)
JMW: Jahresmittelwert (Jän bis Dez)
Wien-Mittel: Mittelwert über alle Stationen

Datenverfügbarkeit:

Wert zentriert und standard: gemäß IG-L

Wert kursiv und rechtsbündig: mehr als 75% Grunddaten verfügbar "A" zentriert: mehr als 75% Grunddaten verfügbar weniger als 75% Grunddaten verfügbar

Tabelle 23: Stickstoffoxid Monatsmittelwerte in Wien im Jahr 2013

Schadstoffentwicklung

In der Abfolge der über das Wiener Stadtgebiet gemittelten Jahresmittelwerte von 1997 bis 2013 ist kein signifikanter Trend der Stickstoffdioxidbelastung erkennbar, wie aus der nachfolgenden Abbildung (Abbildung 8) ersichtlich ist. Die Jahresmittelwerte der Stickstoffoxid-Konzentrationen zeigen dagegen einen deutlich sinkenden Trend.

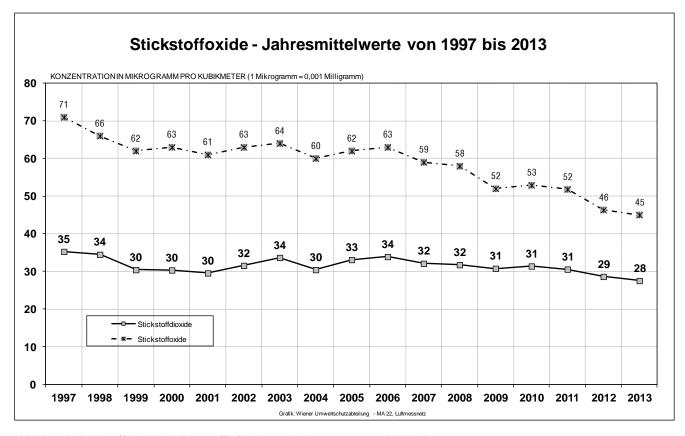


Abbildung 8: Stickstoffdioxid und Stickstoffoxid Jahresmittelwerte von 1997 bis 2013

3.5 Kohlenmonoxid (CO)

Die Lage der CO-Messstellen im Stadtgebiet wird in der nebenstehenden Abbildung (Abbildung 9) dargestellt. Im Jahr 2013 wurden in Wien vier CO-Messstellen gemäß IG-L betrieben. Davon liegen die Messstellen Taborstraße und Hietzinger Kai verkehrsnah¹¹ und die Stelle Rinnböckstraße verkehrsbeeinflusst (rote Dreiecke in der nebenstehenden Abbildung). Die Station Gaudenzdorf befindet sich im bebauten Stadtgebiet.

Grenzwertüberschreitungen

Im Jahr 2013 sind keine Überschreitungen des Grenzwertes von 10 mg/m³ als Achtstundenmittelwert festgestellt worden. Der höchste beobachtete Achtstundenmittelwert betrug 1,3 mg/m³ an der Station Hietzinger Kai.

Ergebnisse der Immissionsmessungen

Die folgende Tabelle (Tabelle 24) gibt einen Überblick über die Kohlenmonoxid – Monatsmittelwerte in Wien im Jahr 2013. Die Angaben erfolgen in Milligramm pro Kubikmeter.

Jahresübersicht über die Kohlenmonoxid Jahres- und Monatsmittelwerte															
	Jän	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	WMW	SMW	JMW
2, Taborstraße	0,6	0,5	0,5	0,4	0,3	0,3	0,3	0,2	0,3	0,4	0,4	0,5	0,5	0,3	0,4
11, Rinnböckstraße	0,5	0,5	0,4	0,3	0,2	0,2	0,2	0,2	0,2	0,4	0,4	0,4	0,4	0,3	0,3
12, Gaudenzdorf	0,4	0,4	0,4	0,3	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,4	0,4	0,2	0,3
13, Hietzinger Kai	0,5	0,5	0,4	0,4	0,3	0,3	0,2	0,3	0,3	0,4	0,4	0,5	0,5	0,3	0,4
Wien-Mittel	0,5	0,5	0,4	0,4	0,3	0,2	0,2	0,2	0,2	0,4	0,4	0,5	0,5	0,3	0,3

Legende:

WMW: Wintermittelwert (Okt 2012 bis März 2013)

SMW: Sommermittelwert (Apr bis Sep)
JMW: Jahresmittelwert (Jän bis Dez)
Wien-Mittel: Mittelwert über alle Stationen

Datenverfügbarkeit:

Wert zentriert und standard: gemäß IG-L

Wert kursiv und rechtsbündig: mehr als 75% Grunddaten verfügbar weniger als 75% Grunddaten verfügbar weniger als 75% Grunddaten verfügbar

Tabelle 24: Kohlenmonoxid Monatsmittelwerte in Wien im Jahr 2013

 $^{^{\}rm 11}$ Verkehrsnah: Die Probenahme liegt in einer Entfernung von höchstens 10 m vom Fahrbahnrand.

Schadstoffentwicklung

Seit Jahren wurden im Wiener Messnetz keine Gesundheitsschutzgrenzwertüberschreitungen mehr registriert. Seit rund 15 Jahren ist ein sinkender Trend zu beobachten. Die Abbildung 10 gibt einen Überblick über den Verlauf der Jahresmittelwerte von 1997 bis 2013.

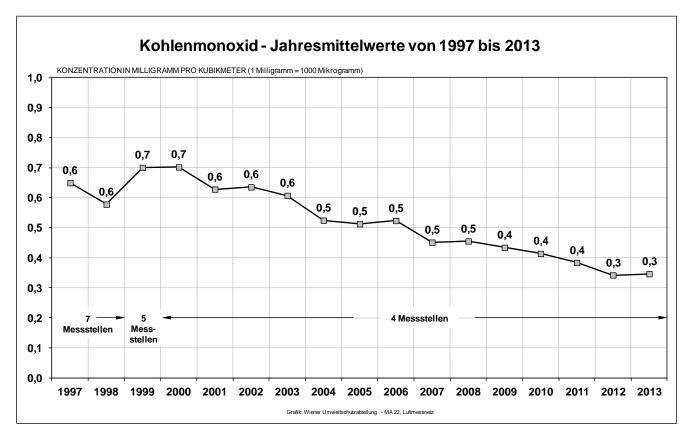


Abbildung 10: Kohlenmonoxid Jahresmittelwerte von 1997 bis 2013

3.6 Ozon (O₃)

Die Lage der Ozon-Messstellen im Stadtgebiet wird in der nebenstehenden Abbildung (Abbildung 11) dargestellt. Im Jahr 2013 wurden in Wien fünf Ozon-Messstellen gemäß Ozongesetz [5] betrieben. Davon liegen die Messstellen Hermannskogel und Lobau in Erholungsgebieten, die vom innerstädtischen Geschehen weitgehend unbeeinflusst sind (grüne Quadrate). Die übrigen Stationen liegen im bebauten Gebiet mit unterschiedlicher Dichte und Gebäudehöhe.

Der Sekundärschadstoff Ozon mit seinen komplexen chemischen Bildungsprozessen ist aufgrund der räumlichen Verteilung von überregionaler und internationaler Bedeutung.

Eine verkehrsnahe Erfassung von Ozon ist nicht sinnvoll, da aufgrund der reduzierenden Wirkung durch Verkehrsabgase, im speziellen durch NO, die Ozonkonzentration in unmittelbarer

Nähe von Fahrzeugemissionen stark abgesenkt wird. Aus diesem Grund werden die höchsten Belastungen auch abseits von Verkehrswegen festgestellt. Die Messung dieses Schadstoffes konzentriert sich daher auf den Grünraum. Aber auch an Standorten mit hoher Bevölkerungsdichte (Stephansplatz und Laaer Berg) wird Ozon gemessen.

Überschreitungen der Ozon-Alarmschwelle in Nordostösterreich

Gemäß Ozongesetz [5] wird eine Überschreitung der Ozon-Alarmschwelle im Ozon-Überwachungsgebiet I, Nordostösterreich, festgestellt, sobald an zumindest einer Messstelle in diesem Gebiet der Einstundenwert über den Wert von $240~\mu g/m^3$ steigt. Die Bevölkerung wird daraufhin solange über die erhöhte Ozonbelastung in Nordostösterreich informiert, bis eine weitere Überschreitung innerhalb der nächsten 24 Stunden nicht zu erwarten ist.

Die Alarmschwelle wurde im Jahr 2013 zweimal an je einer Messstelle in Niederösterreich, in Wien aber an keiner der fünf Ozon-Messstellen überschritten. Die erste Überschreitung wurde mit einem Wert von 245 $\mu g/m^3$ an der Station Streithofen und die zweite mit dem Wert von 250 $\mu g/m^3$ an der Station Schwechat gemessen. Der höchste Wert in Wien wurde mit einer Konzentration von 239 $\mu g/m^3$ an der Messstelle Lobau registriert.

		Ozon-Episoden	Anzahl betroffener Stationen							
in Nordostösterreich 2013			Wien	Niederösterreich	Burgenland					
Di,	18. 6.	ausgelöst um 16 Uhr	keine	1	keine					
Mi,	19. 6.	entwarnt um 9 Uhr	keine	keine	keine					
Sa,	3. 8.	ausgelöst um 14 Uhr	keine	1	keine					
Sa,	3. 8.	entwarnt um 17 Uhr	keine	keine	keine					

Tabelle 25: Ozon-Episoden in Nordostösterreich 2013

Überschreitungen der Ozon-Informationsschwelle

Gemäß Ozongesetz [5] wird eine Überschreitung der Ozon-Informationsschwelle ($180 \,\mu g/m^3$ als Einstundenmittelwert) im Ozon-Überwachungsgebiet I, Nordostösterreich festgestellt, sobald an mindestens einer Messstelle in diesem Gebiet eine Überschreitung registriert wurde. Die Bevölkerung wird anschließend solange verstärkt über die Ozonbelastung in Nordostösterreich informiert, bis eine weitere Überschreitung innerhalb der nächsten 24 Stunden nicht zu erwarten ist.

Im Jahr 2013 wurde die Ozon-Informationsschwelle im Ozon-Überwachungsgebiet I fünfmal ausgelöst und war an insgesamt siebzehn Tagen aufrecht. An dreizehn Tagen stieg die Ozonbelastung in Nordostösterreich über die 180 µg/m³ Marke, davon an fünf Tag in Wien. Die nachfolgende Tabelle (Tabelle 26) gibt eine Übersicht der Ozon-Episoden in Nordostösterreich im Jahr 2013 und die Anzahl der jeweils betroffenen Messstellen in den einzelnen Bundesländern des Ozon-Überwachungsgebietes.

		Ozon-Episoden	Anzahl betroffener Stationen							
	in No	ordostösterreich 2013	Wien	Niederösterreich	Burgenland					
Mo,	17. 6.	ausgelöst um 14 Uhr	keine	1	keine					
Di,	18. 6.	verlängert	keine	4	keine					
Mi,	19. 6.	verlängert	keine	1	keine					
Do,	20. 6.	entwarnt um 16 Uhr	keine	keine	keine					
Mi,	24. 7.	ausgelöst um 16 Uhr	keine	1	keine					
Do,	25. 7.	entwarnt um 9 Uhr	keine	keine	keine					
Fr,	26. 7.	ausgelöst um 15 Uhr	keine	4	keine					
Sa,	27. 7.	verlängert	2	4	keine					
Mo,	29. 7.	entwarnt um 16 Uhr	keine	keine	keine					
Mo,	29. 7.	ausgelöst um 17 Uhr	keine	1	1					
Di,	30. 7.	entwarnt um 9 Uhr	keine	keine	keine					
Fr,	2. 8.	ausgelöst um 14 Uhr	keine	3	keine					
Sa,	3. 8.	verlängert	4	4	keine					
So,	4. 8.	verlängert	1	6	1					
Di,	6. 8.	verlängert	2	11	keine					
Mi,	7. 8.	verlängert	keine	1	keine					
Do,	8. 8.	verlängert	1	9	keine					
Fr,	9. 8.	entwarnt um 9 Uhr	keine	keine	keine					

Tabelle 26: Ozon-Episoden in Nordostösterreich 2013

Alle im Jahr 2013 in Wien gemessenen Überschreitungen der Ozon-Informationsschwelle von 180 $\mu g/m^3$ sind in der nachfolgenden Tabelle (Tabelle 27) detailliert beschrieben (Datum, Messstelle, Werte in $\mu g/m^3$ und Uhrzeit in MESZ).

Datum		Messstelle	13 ⁰⁰	1400	1500	16 ⁰⁰	1700
Sa,	27.7.	Hermannskogel	198	193	189	185	-
Sa,	27.7.	Hohe Warte	186	-	-	-	-
Sa,	3.8.	Stephansplatz	-	189	-	-	-
Sa,	3.8.	Laaer Berg	188	202	199	-	-
Sa,	3.8.	Hohe Warte	193	211	-	-	-
Sa,	3.8.	Lobau	232	239	-	-	-
Mo,	4.8.	Hermannskogel	-	-	-	181	-
Di,	6.8.	Hermannskogel	-	-	202	216	185
Di,	6.8.	Hohe Warte	-	186	195	184	-
Do,	8.8.	Hermannskogel	184	195	-	-	-

Tabelle 27: Ozon-Episoden in Wien 2013

Zielwertüberschreitungen

Im Jahr 2013 wurden bei Ozon 794 Achtstundenmittelwerte 12 an 39 Tagen mit einem Wert größer als 120 $\mu g/m^3$ festgestellt. Im Jahr 2012 waren es 552 Achtstundenmittelwerte an 52 Tagen. Der höchste gemessene Achtstundenwert des Jahres 2013 beträgt 180 $\mu g/m^3$ an der Station Hermannskogel, 2012 waren es 157 $\mu g/m^3$ ebenfalls an der Station Hermannskogel. Tabelle 28 gibt einen entsprechenden Überblick.

Ozon-Zielwertüberschreitungen 2013 (5 Messstellen) Zielwert: 120 μg/m³ als Achtstundenmittelwert								
Messstelle	$MW8-O > 120 \ \mu g/m^3$	Maximum						
Hermannskogel	340 Überschreitungen an 38 Tagen	180 μg/m³						
Lobau	149 Überschreitungen an 30 Tagen	171 μg/m³						
Hohe Warte	131 Überschreitungen an 24 Tagen	163 μg/m³						
Laaer Berg	114 Überschreitungen an 19 Tagen	165 μg/m³						
Stephansplatz	60 Überschreitungen an 12 Tagen	145 μg/m³						

Tabelle 28: Ozon-Zielwertüberschreitungen in Wien im Jahr 2013

Ergebnisse der Immissionsmessungen

Die Monats- und Jahresmittelwerte der Wiener Ozon-Messstellen sind in der folgenden Tabelle (Tabelle 29) wiedergegeben. Die Werte sind in Mikrogramm pro Kubikmeter zu verstehen.

Jahresübersicht über die Ozon Jahres- und Monatsmittelwerte 2013															
	Jän	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	WMW	SMW	JMW
1, Stephansplatz	26	36	51	59	58	61	75	67	45	27	22	23	30	61	46
10, Laaer Berg	33	41	62	72	66	66	80	70	48	32	27	29	36	67	52
19, Hermannskogel	37	49	62	83	73	76	96	91	62	47	39	36	43	80	63
19, Hohe Warte	32	45	58	63	59	66	84	73	49	28	27	25	35	66	51
22, Lobau	34	46	66	68	63	63	73	64	45	31	27	30	38	63	51
Wien-Mittel	33	43	60	69	64	66	82	73	50	33	28	28	36	67	52

Legende:

WMW: Wintermittelwert (Okt 2012 bis März 2013)

SMW: Sommermittelwert (Apr bis Sep)
JMW: Jahresmittelwert (Jän bis Dez)
Wien-Mittel: Mittelwert über alle Stationen

Datenverfügbarkeit:

Wert zentriert und standard: gemäß IG-L

Wert kursiv und rechtsbündig: mehr als 75% Grunddaten verfügbar "A" zentriert: weniger als 75% Grunddaten verfügbar

Tabelle 29: Ozon Monatsmittelwerte in Wien im Jahr 2013

¹² Achtstundenwerte bei Ozon werden aus Einstundenwerten gebildet.

Aufgrund des Bildungsmechanismus von Ozon ist die Intensität der Sonneneinstrahlung ein wesentlicher und bestimmender Faktor für hohe Ozonwerte. In den Wintermonaten werden deshalb auch sehr selten Überschreitungen des Zielwertes (MW8-O > 120 $\mu g/m^3$) festgestellt. Die nachstehende Tabelle (Tabelle 30) gibt einen Überblick über die 2013 in Wien erfassten Tage mit Überschreitungen des Ozon-Zielwertes, der Ozon-Informationsschwelle und der Ozon-Alarmschwelle.

Anzahl Tage mit Ozon MW8-O > 120 µg/m³	Stephansplatz	Laaer Berg	Hermannskogel	Hohe Warte	Lobau	Wien
März	0	0	0	0	1	1
April	0	2	6	1	5	6
Mai	0	0	1	0	0	1
Juni	1	0	4	1	2	4
Juli	6	9	13	11	12	13
August	5	8	14	11	10	14
Septemb er	0	0	0	0	0	0
Oktober	0	0	0	0	0	0
Jahr 2013	12	19	38	24	30	39

Anzahl Tage mit Ozon 1MW > 180 µg/m³	Stephansplatz	Laaer Berg	Hermannskogel	Hohe Warte	Lobau	Wien
März	0	0	0	0	0	0
April	0	0	0	0	0	0
Mai	0	0	0	0	0	0
Juni	0	0	0	0	0	0
Juli	0	0	1	1	0	1
August	1	1	3	2	1	4
Septemb er	0	0	0	0	0	0
Oktober	0	0	0	0	0	0
Jahr 2013	1	1	4	3	1	5

Anzahl Tage mit Ozon 1MW > 240 µg/m³	Stephansplatz	Laaer Berg	Hermannskogel	Hohe Warte	Lobau	Wien
März	0	0	0	0	0	0
April	0	0	0	0	0	0
Mai	0	0	0	0	0	0
Juni	0	0	0	0	0	0
Juli	0	0	0	0	0	0
August	0	0	0	0	0	0
Septemb er	0	0	0	0	0	0
Oktober	0	0	0	0	0	0
Jahr 2013	0	0	0	0	0	0

Tabelle 30: Anzahl der Ozon – Überschreitungstage in Wien im Jahr 2013

Dabei zeigt sich das in der folgenden Illustration dargestellte Belastungsbild (Abbildung 12).

	Jänner	Februar	März	April		
Stephansdom						
Laaer Berg						
Hermannskogel						
Zentralanstalt						
Lobau						

	Mai	Juni	Juli	August
Stephansdom				
Laaer Berg				
Hermannskogel				
Zentralanstalt				
Lobau				

	September	Oktober	November	Dezember
Stephansdom				
Laaer Berg				
Hermannskogel				
Zentralanstalt				
Lobau				

..... MW8-O > 120 μg/m³ 1MW > 180 μg/m³ 1MW > 240 μg/m³

Abbildung 12: Ozon Überschreitungen in Wien im Jahr 2013 – Belastungsbild

Schadstoffentwicklung

Aufgrund der starken Witterungsabhängigkeit der Ozonbelastung sind Trendaussagen schwierig. Wie die untenstehende Darstellung (Abbildung 13) der Ozon-Jahresmittelwerte der letzten 17 Jahre zeigt, kann kein eindeutiger Trend der Langzeitbelastung abgelesen werden.

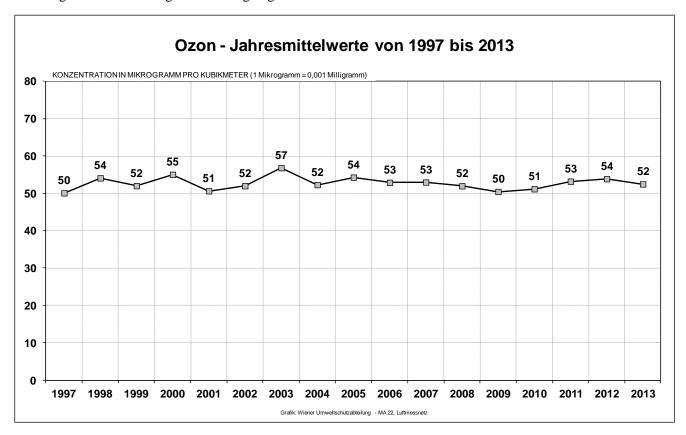


Abbildung 13: Ozon Jahresmittelwerte von 1997 bis 2013

Städtische Messstellen sind für Langzeituntersuchungen wegen des Einflusses messstellennaher NO-Emittenten auf die Ozonkonzentration nur bedingt geeignet. Die Spitzenbelastung, beurteilt anhand des maximal gemessenen Einstundenmittelwertes eines Jahres, schwankt deutlich im Laufe der letzten 17 Jahre, wie aus nachstehender Abbildung (Abbildung 14) hervorgeht. Die Abhängigkeit von meteorologischen Einflüssen wirkt sich bei den Spitzenwerten noch stärker aus als bei Langzeitmittelwerten. Lang anhaltende sommerliche Hochdruckwetterlagen bei geringen Windgeschwindigkeiten begünstigen die Ozonbildung. Die Spitzenbelastungen zeigen im Zeitraum 1997 bis 2013 keinen signifikanten Trend.

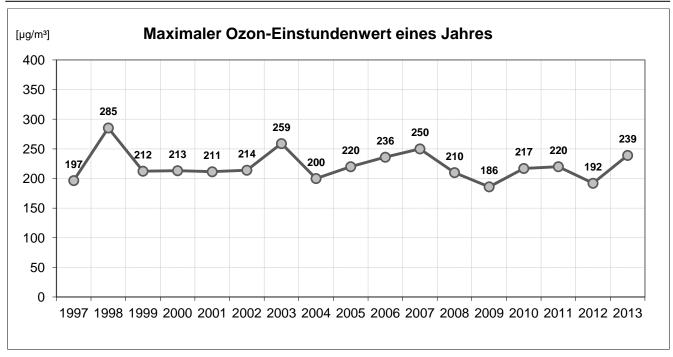


Abbildung 14: Maximaler Ozon-Einstundenwert eines Jahres von 1997 bis 2013

Vegetationsschutz

Im Ozongesetz ist ein Vegetationsschutz-Grenzwert verankert, der sogenannte AOT40 ("accumulation over threshold 40 ppb"), der gemäß der Standortkriterien aus § 9 Abs. 4 Ozongesetz [5] an den Messstellen Hermannskogel, Hohe Warte und Lobau überwacht wird. Dabei wird der über 80 μ g/m³ (das sind etwa 40 ppb) liegende Anteil der Einstundenwerte (1MW) der Ozonkonzentration von 8 bis 20 Uhr im Zeitraum Mai bis Juli, also in der Hauptaktivitätszeit der Pflanzenwelt, summiert. Gemittelt über fünf Jahre soll dieser Wert 18000 μ g/m³h nicht übersteigen. Die Einhaltung dieses Wertes ist in Ballungsräumen nicht bindend, trotzdem wird er vom Wiener Luftmessnetz überwacht. Der Vegetationsschutz-Grenzwert wurde im Jahr 2013 an der Messstelle Hermannskogel überschritten. Der über fünf Jahre gemittelte AOT40 beträgt an der Messstelle Hermannskogel 18473 μ g/m³h, an der Messstelle Hohe Warte 14873 μ g/m³h und an der Messstelle Lobau 14019 μ g/m³h. Abbildung 15 stellt den Verlauf der AOT40 Messwerte seit dem Jahr 2001 dar.

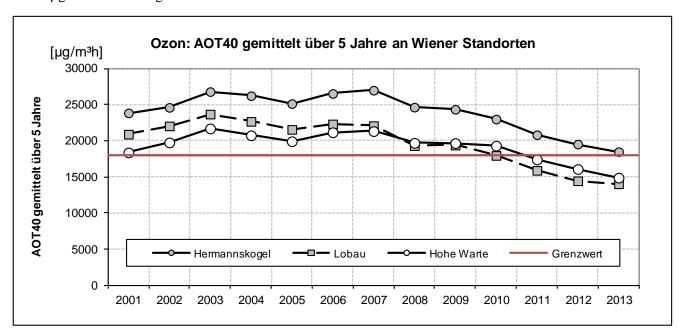


Abbildung 15: Ozon, AOT40 gemittelt über 5 Jahre in Wien

Ab 2020 soll der jährliche AOT40 gemäß Ozongesetz den Wert von 6000 μg/m³h nicht übersteigen!

4 Ergebnisse diskontinuierlicher Stichprobenanalysen

4.1 Benzol

Für Wien ist eine Mindestanzahl von zwei Benzol-Messstellen in der Messkonzept-Verordnung [2] vorgeschrieben. Die Messstelle Rinnböckstraße wurde als Trendmessstelle für Benzol festgelegt und als zweite Benzol-Messstelle dient die am stärksten verkehrsbelastete Messstelle Hietzinger Kai (siehe Abschnitt 7.3).

Messmethode

Beim Wiener Luftmessnetz erfolgt die Benzol-Probenahme diskontinuierlich mittels Besaugung von Dräger-Aktivkohleröhrchen-B/G mit einem DIGITEL Pumpenaggregat DPA96M. Der Durchsatz liegt dabei bei 1 Liter Luft pro Minute.

Die Probenahmedauer für eine Einzelprobe (Tagesprobe) beträgt 24 Stunden. Die Probenahme beginnt um 00^{00} Uhr und endet um 24^{00} Uhr des gleichen Tages. Jeden 8. Tag wird eine Messung durchgeführt (nach jeder Tagesprobe erfolgt demnach eine Pause von sieben Tagen). Dadurch verschiebt sich die Probenahme jeweils um einen Wochentag. Die Probenahme erfolgt in beiden Messstellen am gleichen Tag.

Nach Extraktion der Aktivkohleschicht der Proben mit Kohlenstoffdisulfid wird der gewonnene Extrakt mittels Gaschromatografie und massenspektrometrischer Detektion analysiert.

Grenzwertüberschreitungen

Der Grenzwert für Benzol ist im IG-L als Jahresmittelwert (JMW) von 5 $\mu g/m^3$ definiert und wurde im Jahr 2013 an beiden Messstellen eingehalten.

Ergebnisse der Immissionsmessung

In der nachstehenden Abbildung (Abbildung 16) werden, beginnend mit dem Jahr 2003, die Jahresmittelwerte der zwei Messstationen angeführt. Im Jahr 2013 wurde an der Wiener Benzol-Messstation Rinnböckstraße ein Wert von 1,3 μ g/m³ und an der Station Hietzinger Kai ein Wert von 1,2 μ g/m³ gemessen.

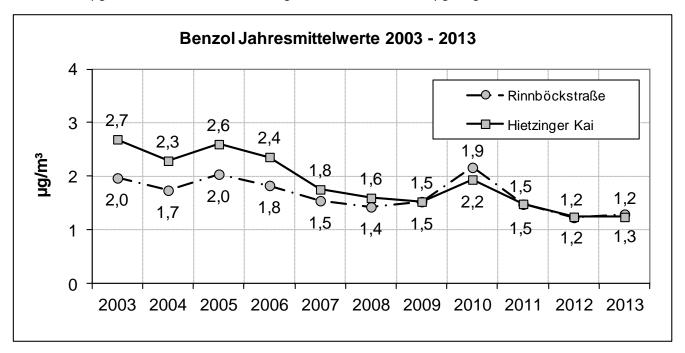


Abbildung 16: Benzol Jahresmittelwerte von 2003 bis 2013

Der seit 2002 höchste bestimmte Wert liegt deutlich unterhalb des festgelegten Grenzwertes von 5 µg/m³.

Schadstoffentwicklung

Über einen Beobachtungszeitraum von mehr als zehn Jahren ist ein rückläufiger Trend der Benzolbelastung an beiden Messstandorten festzustellen.

4.2 Benzo(a)pyren

Der Benzo(a)pyren-Gehalt in der Feinstaub-Fraktion PM₁₀ wird vom Wiener Luftmessnetz beginnend mit dem Jahr 2007 überwacht (Abbildung 17). Der Grenzwert nach IG-L beträgt 1 ng/m³ und wird an den beiden Stationen "AKH" und "Rinnböckstraße" im Jahr 2013 eingehalten. An der Station Rinnböckstraße wurde 2013 ein Wert von 0,5 ng/m³ und an der Station AKH ein Wert von 0,4 ng/m³ gemessen. Der Verlauf der Jahresmittelwerte lässt einen leicht sinkenden Trend erkennen.

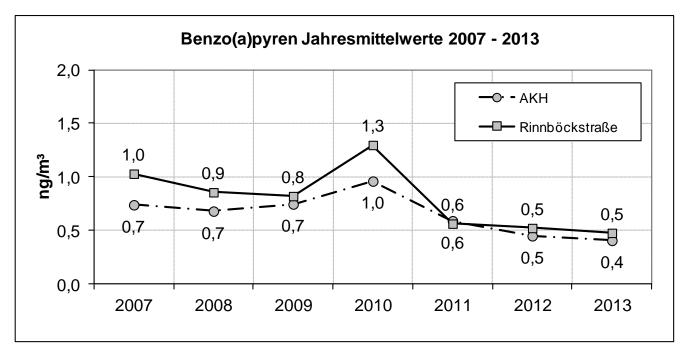


Abbildung 17: Bezo(a)pyren Jahresmittelwerte 2007 bis 2013

Für die Messung von Benzo(a)pyren im PM_{10} werden aus den bei der PM_{10} -Messung anfallenden Feinstaubfiltern an jedem dritten Tag Proben entnommen, monatsweise mittels Hochleistungsflüssigchromatographie (HPLC) gemäß ÖNORM EN 15549 analysiert und ein Jahresmittelwert berechnet.

4.3 Schwermetalle im PM₁₀

Der Gehalt der Schwermetalle Blei, Arsen, Kadmium und Nickel in der Feinstaub-Fraktion PM_{10} wird vom Wiener Luftmessnetz beginnend mit dem Jahr 2007 an der Messstelle "Rinnböckstraße" überwacht. Tabelle 31 gibt einen Überblick über die Jahresmittelwerte von 2007 bis 2013.

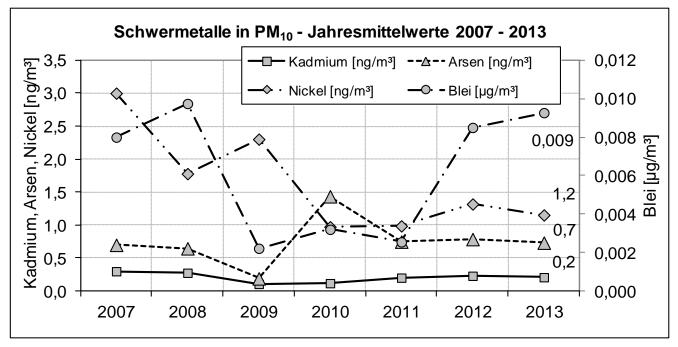


Abbildung 18: Schwermetalle in PM₁₀ – Jahresmittelwerte von 2007 bis 2013

Für die Messung von Schwermetallen im PM_{10} werden aus den bei der PM_{10} -Messung anfallenden Feinstaubfiltern an jedem sechsten Tag Proben entnommen, einzeln mit Atomabsorptionsspektrometrie analysiert und ein Jahresmittelwert berechnet. Die Analysenergebnisse für Kadmium in PM_{10} liegen häufig unterhalb der Bestimmungsgrenze des Messverfahrens.

	Schwermetalle - Jahresmittelwerte(JMW) von 2007 bis 2013							
	Grenwert	2007	2008	2009	2010	2011	2012	2013
Blei	$0.5 \ \mu g/m^3$	0,008	0,01	0,002	0,003	0,003	0,009	0,009
Arsen	6 ng/m³	0,7	0,6	0,2	1,4	0,7	0,8	0,7
Kadmium	5 ng/m³	0,3	0,3	0,1	0,1	0,2	0,2	0,2
Nickel	20 ng/m³	3,0	1,8	2,3	1,0	1,0	1,3	1,2

Tabelle 31: Schwermetalle in PM₁₀ – Jahresmittelwerte in Wien von 2007 bis 2013

Alle Grenzwerte gemäß IG-L für Schwermetalle wurden im Jahr 2013 eingehalten.

4.4 Staubniederschlag

Messmethode

Der Staubniederschlag wird mit dem sogenannten Bergerhoffverfahren bestimmt. Dieses Messverfahren beruht darauf, dass der durch Gravitation und turbulente Diffusion sedimentierte Anteil von partikelförmigen luftfremden Stoffen monatlich in Gefäßen gesammelt wird. Das Sammelgut wird von groben Verunreinigungen (Blätter, Insekten, Federn, etc.) händisch gereinigt, anschließend eingedampft und der Rückstand abgewogen.

In Wien wurden für die Sammlung von Staubdepositionen zwei Standorte gewählt. Einer befindet sich in einem Grüngebiet (Laaer Wald), der zweite unweit einer Stadtautobahn (Ostautobahn) mit sehr hohem Verkehrsaufkommen. Der Standort an der Ostautobahn wurde wegen der Errichtung eines Gebäudes im Jahr 2012 um ca. 470 Meter entlang der A4 Richtung Südost verlegt.

Grenzwertüberschreitungen und Schadstoffentwicklung

Für den Staubniederschlag ist ein Grenzwert von 210 mg/(m²d) festgelegt. Im Jahr 2013 wurden 103 mg/(m²d) an der Station "Laaer Wald" gemessen und 156 mg/(m²d) an der Station "A4-Ostautobahn". Wie Abbildung 19 veranschaulicht, wurde an beiden Wiener Messstandorten der IG-L Grenzwert bisher deutlich unterschritten. Die Messmethode ist mit großen Unsicherheiten behaftetet, was sich in der Schwankungsbreite der dargestellten Messwerte widerspiegelt.

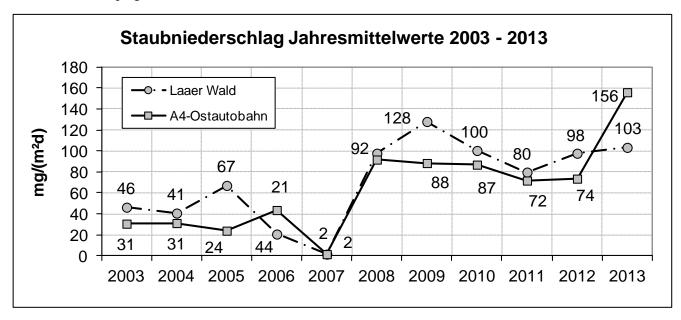


Abbildung 19: Staubniederschlag – Jahresmittelwerte von 2003 bis 2013

4.5 Blei im Staubniederschlag

Messmethode

Der zur Bestimmung des Staubniederschlags gewonnene Rückstand des Sammelgutes wird mit Königswasser aufgeschlossen und mittels Atomabsorptionsspektrometrie analysiert.

Grenzwertüberschreitungen und Schadstoffentwicklung

Der Depositionsgrenzwert nach IG-L von Blei im Staubniederschlag ist mit 0,100 mg/(m²d) als Jahresmittelwert definiert und wird an den Stationen "Laaer Wald" und "A4-Ostautobahn" überwacht. Der Grenzwert wird an beiden Stationen weit unterschritten. Im Jahr 2013 wurden 0,013 mg/(m²d) an der Station "Laaer Wald" gemessen und 0,040 mg/(m²d) an der Station "A4-Ostautobahn". Abbildung 20 veranschaulicht die Entwicklung der letzten Jahre.

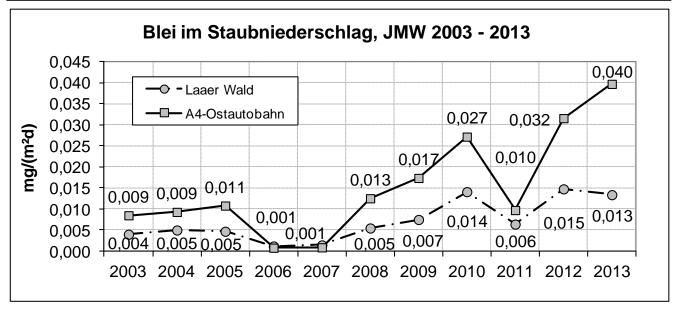


Abbildung 20: Blei im Staubniederschlag – Jahresmittelwerte von 2003 bis 2013

4.6 Kadmium im Staubniederschlag

Messmethode

Für die Messung des Kadmiumgehalts im Staubniederschlag wird der zur Bestimmung des Staubniederschlags gewonnene Rückstand des Sammelgutes mit Königswasser aufgeschlossen und mittels Atomabsorptionsspektrometrie analysiert.

Grenzwertüberschreitungen und Schadstoffentwicklung

Der Depositionsgrenzwert nach IG-L für Kadmium im Staubniederschlag ist mit $0,002~\text{mg/(m}^2\text{d})$ definiert und wird an den Stationen "Laaer Wald" und "A4-Ostautobahn" überwacht. Im Jahr 2013 wurden an der Station "Laaer Wald" $0,0003~\text{mg/(m}^2\text{d})$ und an der Station "A4-Ostautobahn" $0,0011~\text{mg/(m}^2\text{d})$ gemessen. Abbildung 21 zeigt eine Übersicht über die Jahresmittelwerte von 2003 bis 2013.

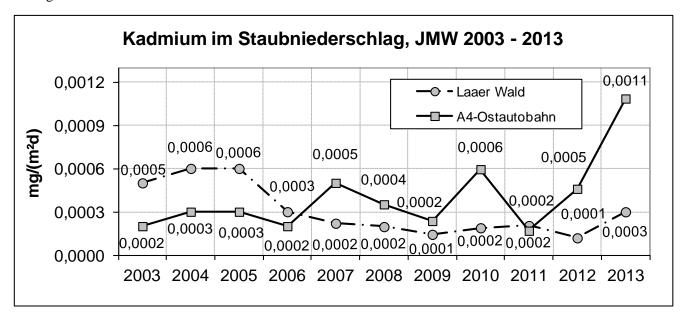


Abbildung 21: Kadmium im Staubniederschlag – Jahresmittelwerte von 2003 bis 2013

Der Kadmiumgehalt im Staubniederschlag liegt an beiden Messstellen deutlich unter dem festgelegten Grenzwert. Eindeutige Trendaussagen können anhand der Messergebnisse nicht getroffen werden. Der einzelne höhere Wert des Jahres 2013 an der Station A4-Ostautobahn rechtfertigt noch keine Trendaussage. Der weitere Verlauf in den Folgejahren muss beobachtet werden.

5 Vorerkundungsmessungen

Im Jahr 2013 wurden keine Vorerkundungsmessungen vom Luftmessnetz der Stadt Wien durchgeführt.

6 Ausblick

Ab 1. Jänner 2014 nimmt die neue Trendmessstelle A23-Wehlistraße als Ersatz für die Messstelle Rinnböckstraße ihren Betrieb auf. Die Messstelle Rinnböckstraße muss Anfang 2014 wegen der Errichtung eines Bürogebäudes aufgelassen werden.

Feinstaub PM₁₀ und PM_{2.5}

Um die sensiblen PM_{10} -Grenzwerte genauer überwachen zu können, wird die Anzahl der Stationen, die PM_{10} mit dem gravimetrischen Referenzverfahren erfassen, im Jahr 2014 um zwei Stationen erhöht. Im Gegenzug wird $PM_{2,5}$ nur noch an vier der sechs Stationen gravimetrisch gemessen.

Die Ausstattung der Feinstaubmessung für PM_{10} im Wiener Luftmessnetz erfolgt im Zeitraum 2003 bis 2014 gemäß folgendem Schema (Tabelle 32).

Messstelle	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Taborstraße	-	-	G	G/S	G/S	G/S	G/S	G/Ä	G/Ä	G/Ä ₂	G/Ä ₂	G/\ddot{A}_2
AKH	-	-	G	G/S	G/S	G/S	G/S	G/Ä	G/Ä	G/Ä ₂	G/Ä ₂	G/Ä ₂
Belgradplatz	G	G/S	G/S	G/S	G/S	G/S	S	Ä	Ä	\ddot{A}_2	\ddot{A}_2	G/Ä ₂
Laaer Berg	-	G	S	S	S	S	G/S	Ä	Ä	\ddot{A}_2	\ddot{A}_2	\ddot{A}_2
Kaiser-Ebersdorf	-	G	S	S	S	S	G/S	Ä	Ä	\ddot{A}_2	\ddot{A}_2	\ddot{A}_2
Rinnböckstraße	G	G/S	G/S	G/S	G/S	G/S	G/S	G/Ä	G/Ä	G/Ä ₂	G/Ä ₂	-
A23-Wehlistraße	-	-	-	-	-	-	-	-	-	-	-	G/\ddot{A}_2
Gaudenzdorf	G	S	S	S	S	G/S	S	Ä	Ä	Ä	\ddot{A}_2	G/\ddot{A}_2
Kendlerstraße	-	G	S	S	S	S	G/S	G/Ä	Ä	\ddot{A}_2	\ddot{A}_2	G/\ddot{A}_2
Schafberg	G/S	G/S	G/S	G/S	G/S	G/S	S	Ä	Ä	Ä	\ddot{A}_2	\ddot{A}_2
Gerichtsgasse	-	G	S	S	S	S	G/S	Ä	Ä	Ä	\ddot{A}_2	\ddot{A}_2
Lobau	-	G	S	S	S	S	G/S	Ä	Ä	\ddot{A}_2	\ddot{A}_2	\ddot{A}_2
Stadlau	(G)	S	S	S	S	G/S	S	G/Ä	G/Ä	G/Ä ₂	G/Ä ₂	\ddot{A}_2
Liesing-Gewerbegebiet	G/S	G/S	G/S	G/S	G/S	G/S	S	G/Ä	G/Ä	G/Ä ₂	G/Ä ₂	G/Ä ₂

Legende:

- G: Gravimetrische Erfassung, offizielle Messung (IG-L)
- G/S: Gravimetrische Erfassung, offizielle Messung (IG-L) und tagesaktuelle Berichterstattung mit Standortfaktor (zulässig bis 2009)
- G/Ä: Gravimetrische Erfassung, offizielle Messung (IG-L) und tagesaktuelle Berichterstattung mit äquivalentem kontinuierlichen Messverfahren nach dem ß-Strahlen-Absorptionsprinzip
- G/Ä₂: Gravimetrische Erfassung, offizielle Messung (IG-L) und tagesaktuelle Berichterstattung mit äquivalentem kontinuierlichen Messverfahren nach dem Partikelzählerprinzip
 - S: Messung mit Standortfaktor, offizielle Messung (IG-L)
 - Ä: Äquivalentes, kontinuierliches Messverfahren nach dem ß-Strahlen-Absorptionsprinzip, offizielle Messung (IG-L)
 - Ä2: Äquivalentes, kontinuierliches Messverfahren nach dem Partikelzählerprinzip, offizielle Messung (IG-L)

Tabelle 32: PM₁₀ Erfassung an Wiener Messstellen

Die Ausstattung der Feinstaubmessung für $PM_{2,5}$ in Wien entwickelt sich ab 2003 gemäß folgendem Schema (Tabelle 33).

Messstelle	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Taborstraße	-	-	-	-	G/S	G/S	G/S	G/Ä	G/Ä	G/Ä ₂	G/Ä ₂	G/Ä ₂
AKH	S	S	G/S	G/S	G/S	G/S	G/S	G/Ä	G/Ä	G/Ä ₂	G/Ä ₂	G/Ä ₂
Rinnböckstraße	-	-	-	-	-	-	-	-	G	G/Ä ₂	G/Ä ₂	-
A23-Wehlistraße	-	-	-	-	-	-	-	-	-	-	-	G/Ä ₂
Kendlerstraße	-	-	-	-	-	-	-	-	G	G/Ä ₂	G/Ä ₂	\ddot{A}_2
Lobau	-	-	-	-	-	-	-	-	G	G/Ä ₂	G/Ä ₂	G/Ä ₂
Stadlau	-	-	-	-	-	-	-	-	G	G/Ä ₂	G/Ä ₂	\ddot{A}_2

Legende:

- G: Gravimetrische Erfassung, offizielle Messung (IG-L)
- G/S: Gravimetrische Erfassung, offizielle Messung (IG-L) und tagesaktuelle Berichterstattung mit Standortfaktor (zulässig bis 2009)
- G/Ä: Gravimetrische Erfassung, offizielle Messung (IG-L) und tagesaktuelle Berichterstattung mit äquivalentem kontinuierlichen Messverfahren nach dem ß-Strahlen-Absorptionsprinzip
- G/Ä₂: Gravimetrische Erfassung, offizielle Messung (IG-L) und tagesaktuelle Berichterstattung mit äquivalentem kontinuierlichen Messverfahren nach dem Partikelzählerprinzip
 - S: Messung mit Standortfaktor, offizielle Messung (IG-L)
 - Ä: Äquivalentes, kontinuierliches Messverfahren nach dem ß-Strahlen-Absorptionsprinzip, offizielle Messung (IG-L)
 - Ä2: Äquivalentes, kontinuierliches Messverfahren nach dem Partikelzählerprinzip, offizielle Messung (IG-L)

Tabelle 33: PM_{2,5} Erfassung an Wiener Messstellen

7 Anhang

7.1 Abkürzungen

Mittelwerte

Die Berechnung der Mittelwerte erfolgt gemäß Anlage 6 IG-L. Die Zeitangaben beziehen sich auf das Ende des jeweiligen Mittelungszeitraums in Mitteleuropäischer Zeit (MEZ).

Kürzel	Bezeichnung	Bemerkung
HMW	Halbstundenmittelwert	Schrittweite: 30 Minuten (48 Werte pro Tag)
1MW	Einstundenmittelwert	Schrittweite: eine Stunde (24 Werte pro Tag)
MW3	Dreistundenmittelwert	Gleitende Auswertung, Schrittweite: 30 Minuten
MW8	Achtstundenmittelwert	Gleitende Auswertung, Schrittweite: 30 Minuten
MW8-O	Achtstundenmittelwert für Ozon	Gleitende Auswertung, Schrittweite: 60 Minuten
TMW	Tagesmittelwert	Mittelwert der HMW von 0-24 Uhr
MMW	Monatsmittelwert	Mittelwert der HMW eines Monats
WMW	Wintermittelwert	Mittelwert der HMW vom 1. Oktober des Vorjahres bis 31. März
SMW	Sommermittelwert	Mittelwert der HMW vom 1. April bis 30. September
JMW	Jahresmittelwert	Mittelwert der HMW eines Jahres
AOT40	AOT40	Englisch: "accumulation over threshold of 40 ppb" ¹³

Tabelle 34: Mittelwerte

Luftschadstoffe

Kürzel	Bezeichnung	Bemerkung
SO_2	Schwefeldioxid	
PM_{10}	Feinstaub < 10 μm	"Particulate Matter" ¹⁴
$PM_{2,5}$	Feinstaub < 2,5 μm	"Particulate Matter" ¹⁵
NO_2	Stickstoffdioxid	
NO	Stickstoffmonoxid	
NO_x	Stickstoffoxide	$NO_x [ppb] = NO [ppb] + NO_2 [ppb]$
CO	Kohlenmonoxid	
O_3	Ozon	
C_6H_6	Benzol	
Cd	Kadmium	
As	Arsen	
Ni	Nickel	
B(a)P	Benzo(a)pyren	
Pb	Blei	
DEP	Staubniederschlag (Deposition)	

Tabelle 35: Luftschadstoffe

¹³ Der AOT40 ist im Ozongesetz [5] als die Summe der Differenzen zwischen den Konzentrationen über 80 μg/m³ und 80 μg/m³ unter ausschließlicher Verwendung der Einstundenmittelwerte (1MW) zwischen 8 und 20 Uhr MEZ im Zeitraum von Mai his Juli definiert

Verwendung der Einstundenmittelwerte (1MW) zwischen 8 und 20 Uhr MEZ im Zeitraum von Mai bis Juli definiert.

14 Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 10 µm eine Abscheidewirksamkeit von 50 % aufweist.

^{50 %} aufweist.

15 Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 2,5 μm eine Abscheidewirksamkeit von 50 % aufweist.

Meteorologie

Kürzel	Bezeichnung	Bemerkung
WGR	Windgeschwindigkeit und -richtung	
TP	Temperatur	
REG	Regen	beinhaltet auch Schneefall
RF	Relative Luftfeuchtigkeit	

Tabelle 36: Meteorologie

Einheiten

Kürzel	Bezeichnung	Bemerkung
μg/m³	Mikrogramm pro Kubikmeter	10 ⁻⁶ Gramm pro Kubikmeter
mg/m³	Milligramm pro Kubikmeter	10 ⁻³ Gramm pro Kubikmeter
ng/m³	Nanogramm pro Kubikmeter	10 ⁻⁹ Gramm pro Kubikmeter
μm	Mikrometer	
ppb	parts per billion	Man beachte: billion = 10 ⁹ , d.h. "Milliarde" im Deutschen
ppm	parts per million	
mg/(m²d)	Milligramm pro Quadratmeter und Tag	

Tabelle 37: Einheiten

Allgemein

Kürzel	Bezeichnung	Bemerkung
IG-L	Immissionsschutzgesetz-Luft	BGBl. I Nr. 115/1997 in der geltenden Fassung (siehe [1])
ICP/MS	Massenspektrometrie mit induktiv gekoppeltem Plasma	Inductively Coupled Plasma / Mass Spectrometry

Tabelle 38: Bezeichnungen – allgemein

7.2 Umrechnungsfaktoren

Umrechnung zwischen Einheiten

 $1~mg/m^3=1000~\mu g/m^3~und~1~ppm=1000~ppb$

Umrechnung zwischen Mischungsverhältnissen

Seit 1. Juli 1999 gelten die in der Tabelle 39 aufgelisteten und bundesweit einheitlichen Umrechnungsfaktoren.

Schadstoff	Molmasse	Umrechnung
SO_2	64,1	1 ppb = $2,6647338 \mu g/m^3$
NO	30,0	1 ppb = 1,2471453 μ g/m ³
NO_2	46,0	1 ppb = 1,9122895 μ g/m ³
СО	28,0	1 ppb = $1,1640023 \mu g/m^3$
O_3	48,0	1 ppb = 1,9954325 μ g/m ³
C ₆ H ₆ (Benzol)	78,1	1 ppb = $3,2456 \mu g/m^3$

Tabelle 39: Umrechnung der Mischungsverhältnisse

Folgende Normbedingungen werden dabei gemäß Anlage 6 IG-L vorausgesetzt: 20°C (293,15K) bei 1013 hPa.

7.3 Messstellen im Jahr 2013

									Messsta	llen des	. Wiener	Luftm	ıessnetz	Messstellen des Wiener Luftmessnetzes im Jahr 2013	2013					
Bez.	.: Name	Kürzel	1 802		Feinstaub &	NOx	00	03	C,H,	As, Ni, Cd, Pb	B(a)P	TI 8	WGR 1	Länge (O) WGS84	Breite (N) WGS84	See- höhe	hA	Adresse	Topographie	Nutzung
-i	Stephansplatz	STEF	SO_2			NO _X Horiba		03					<u> </u>	16,37325361	48,20815000	172	7	Stephansplatz 1	Ebene im Stadtzentrum	städtischer Ballungsraum
2.	Taborstraße	TAB		PM2,5 grav.	PM10 grav.	_	00					-	WGR 10	16,38091806	48,21673944	162	4	Ecke Glockengasse	Ebene	städtischer Ballungsraum
9.	АКН	AKC		PM2,5 grav.	PM10 grav.						B(a)P		Ī	16,34555306	48,21951694	199	3,5	Borschkegasse	Leichte Hanglage	städtischer Ballungsraum
10.	Belgradplatz	BELG			PM 10 äquiv.								Ā	16,36141722	48,17435306	218	3,5	Belgradplatz	Leichte Hanglage am Wienerberg	städtischer Ballungsraum
10.	Laaer Berg	LAA			PM10 äquiv.			03				Λ	WGR 10	16,39292028	48,16103639	251	3,5	Theodor Sickelg. 1	am Rücken des Wienerbergs	Randgebiet eines st. Ballungsraums
10.	Laaer Wald				DEP								1	16,39778167	48,16030444	200	1,5		Rücken des Wienerbergs	Park nahe städt. Ballungsraum
11.	Kaiser-Ebersdorf	f KE	SO_2		PM10 äquiv.	NOx API						TP V	WGR 10	16,47605083	48,15670861	158	3,5	Alberner Straße 8	Ebene	Randgebiet eines st. Ballungsraums
11.	Ostautobahn				DEP								1	6,47019806	16,47019806 48,16537194	155	1,5	Kanzelgarten 481	Ebene	Industriegebiet
11.	Rinnböckstraße	RINN	SO_2	PM2,5 grav.	PM10 grav.	NOx Horiba	00		C ₆ H ₆	As, Ni, Cd. Pb	B(a)P		1	16,40659722	48,18414417	171	3,5	Rinnböckstraße 15	Ebene	städtischer Ballungsraum
12.	Gaudenzdorf	GAUD			PM10 äquiv.		CO					TP	RF 10	16,33933111	48,18714694	179	3,5	Dunklergasse 1-7	Ebene	städtischer Ballungsraum
13.	Hietzinger Kai	MBA				NOx API	CO		C_6H_6				1,	16,30002028	48,18837250	194	2,5	Hietzinger Kai 1-3	Ebene	Einfallsstraße
16.	Kendlerstraße	KEND		PM2,5 grav.	PM10 äquiv.								WGR 10	16,30975028	48,20500278	236	3,5	Kendlerstraße 40	Leichte Hanglage	städtischer Ballungsraum
18.	Schafberg	SCHA	SO_2		PM 10 äquiv.							-	WGR 10	16,30156361	48,23536972	319	3,5	Josef-Redl-Gasse 2	Hanglage	Randgebiet eines st. Ballungsraums
19.	Hermannskogel	JAEG	SO_2			NOx Horiba		03				TP V	WGR 10	16,29726333	48,27015833	488	3,5	Nahe Jägerwiese	Hügel im Wienerwald	Wald nahe Ballungsraum
19.	Hohe Warte	ZA	SO_2			NOx Horiba		03					1	16,35707806	48,24899139	200	9	Hohe Warte 38	Hügelland am Wienerwald	Villenviertel am Stadtrand
20.	A23-Wehlistraße ¹	₁ A23	SO2	PM2,5	PMI0 grav.	NOx Horib	co)	$C_{\delta}H_{\delta}$	As, Ni, Cd, Pb	B(a)P		1	16,43454889	48,20305806	162	3,5	Wehlistraße 366	Ebene	städtischer Ballungsraum
21.	Gerichtsgasse	FLO			PM10 äquiv.	NOX							1	16,39695306	48,26108639	164	3,5	Gerichtsgasse 1a	Ebene	städtischer Ballungsraum
22.	Lobau	LOB		PM2,5 grav.		NOx Horiba		03				TP V	WGR 10	16,52561389	48,16206944	155	3	Grundwasserwerk Untere Lobau	Ebene	Augebiet neben Ballungsraum
22.	Stadlau	STAD	SO_2	PM2,5 grav.		NOx Horiba						>	WGR	16,458345	48,22636083	159	3,5	g 23	Ebene	Randgebiet eines st. Ballungsraums
23.	Liesing Gewerbegebiet	LIES		!	PM10 grav.	NOx API		\square				<i>i></i>	WGR 10	6,29536417	16,29536417 48,13761917	217	3,5	An den Steinfeldern 3	Ebene	Industriegebiet
grav. äquiv	grav gravimetrische Feinstaubmessung äquiv kontinuierliche Feinstaubmessung äquivalent zum Referenzverfahren	Feinst au	bmessu	ng ng äquival	ent zum F	Referenz	verfahı	e,	1 -	Sezugssy Messun _k	stem der gen in der	Koord Wehli	inaten: A straße be	Bezugssystem der Koordinaten: Austria NS (MGI) ¹ Messungen in der Wehlistraße beginnen ab 1.1.2014	1GI) 1.2014		hA	hA Höhe der Ansaugung über Grund in Metern	g über Grund in M	etern
				,																

Abbildung 22: Messstellen des Wiener Luftmessnetzes $^{16}\,$

 $\frac{^{16}}{Positionsangaben in Dezimalgrad (n\"{o}rdliche Breite und \"{o}stliche L\"{a}nge) im Bezugssystem WGS84. Kartendarstellung z.B. durch: \\ \underline{www.wien.gv.at/umweltgut/public} \rightarrow Messwerkzeug \rightarrow Koordinaten \rightarrow Koordinatensystem ,,WGS84" \rightarrow Koordinateneingabe$

7.4 Änderung von Messstellennamen

Um einerseits verwendete Messstellennamen mit dem Umweltbundesamt zu vereinheitlichen und andererseits eine bessere Übereinstimmung des Namens mit dem Gebiet für das die Messergebnisse repräsentativ sind zu erzielen, wurden im Vorjahr die folgenden Messstellennamen angepasst:

alter Messstellenname	neuer Messstellenname
Stephansdom	Stephansplatz
Währinger Gürtel	AKH
Schafbergbad	Schafberg
Zentralanstalt	Hohe Warte
Liesing	Liesing-Gewerbegebiet
Ostautobahn	A4-Ostautobahn

Tabelle 40: geänderte Messstellennamen

Die Standorte und Messstellen selbst sind unverändert geblieben.

7.5 Messverfahren

Kontinuierliche Messverfahren

Die kontinuierlichen Messverfahren liefern Halbstundenmittelwerte. Die folgende Tabelle (Tabelle 41) gibt einen Überblick.

		Messprinzipien der l	continuierlichen Messverfahren
	Gerätetyp	Nachweisgrenze	Messprinzip
SO_2	Horiba APSA 360	2,66 μg/m ³ (2σ)	UV-Fluoreszenz
PM_{10}			Betastrahlen-Absorption; Ansaugung mit 1 m³/h über Digitel PM ₁₀ -Probenahmekopf gemäß EN 12341
äquivalent	Eberline FH 62 I/R	3 μg/m³	Anpassung der Messwerte mit folgender Äquivalenzfunktion:
			$y_{PM10} = \frac{y_{FH62IR-PM10} + 1,43}{0,85}$
PM ₁₀ äquivalent	Grimm EDM-180	Reproduzierbarkeit: 3% im max. Bereich	Laserstreulichtmessung; Probeluft wird mit 72 l/h direkt über einen TSP-Kopf und den Probeeinlass in die Messzelle geführt. Die optische Messzelle zählt und detektiert jeden einzelnen Partikel. Alle Partikel werden in 31 verschiedenen Größenkanäle eingeteilt. Die erhaltenen Anzahlkonzentrationen werden dann mit dem korrespondierenden Dichtefaktor multipliziert. Zugelassen für EN12341, EN14907, GOST R Äquivalenzfunktion: a) für Liesing-Gewerbegebiet: $y_{PM10} = 0,908 \ y_{Grimm-PM10} - 1$ b) für alle anderen Stationen: $y_{PM10} = y_{Grimm-PM10}$

PM _{2,5} äquivalent	Grimm EDM-180	Reproduzierbarkeit: 3% im max. Bereich	Laserstreulichtmessung; Probeluft wird mit 72 l/h direkt über einen TSP-Kopf und den Probeeinlass in die Messzelle geführt. Die optische Messzelle zählt und detektiert jeden einzelnen Partikel. Alle Partikel werden in 31 verschiedenen Größenkanäle eingeteilt. Die erhaltenen Anzahlkonzentrationen werden dann mit dem korrespondierenden Dichtefaktor multipliziert. Zugelassen für EN12341, EN14907, GOST R Äquivalenzfunktion: $y_{PM2,5} = 0.898 \ y_{Grimm-PM2,5} - 0.25$
NO ₂ (Horiba)	Horiba APNA 370	1,72 μ g/m³ (2 σ)	Chemilumineszenz
NO ₂ (API)	API M200E	0,76 μg/m³	Chemilumineszenz
СО	Horiba APMA 370	58,2 μg/m³ (2σ)	Nichtdispersive Infrarot-Absorption
O_3	API T400	1,2 μg/m³	Ultraviolett-Absorption

Tabelle 41: Überblick über die kontinuierlichen Messverfahren

Diskontinuierliche Messverfahren

Die diskontinuierlichen Messverfahren (Tabelle 42) erfordern eine manuelle Auswertung der Proben und haben eine Auflösung von Tagesmittelwerten (bzw. Monatsmittelwerten bei B(a)P). Bei PM₁₀ und PM_{2,5} erfolgt die Probennahme täglich, bei Benzol als Stichprobe im Abstand von acht Tagen, bei Benzo(a)pyren im Abstand von drei Tagen und bei Schwermetallen im Abstand von sechs Tagen.

		Messprinzipien d	er diskontinuierlichen Messverfahren
	Gerätetyp	Bestimmungs- grenze	Messprinzip
PM ₁₀ grav.	Digitel DA-80 H	< 1 μg/m³	Ansaugung über PM ₁₀ - bzw. PM _{2,5} -Kopf mit 30 m³/h auf Filtertyp Qual. 227/1/60, 150 mm (Glasfaser); an Tagen mit Schwermetallanalysen bei PM ₁₀ : Quarzfaser-
PM _{2,5} grav.	Digitel DA-80 H	< 1 μg/m³	Filter QM-A WHAT1851-150. Massenbestimmung gravimetrisch gemäß EN 12341
Benzol		0,21 μg/m³	Elution mit Kohlenstoffdisulfid, gaschromatographische Analyse mit GC-FID (ÖNORM EN 14662-2)

		Messprinzipien d	er diskontinuierlichen Messverfahren
	Gerätetyp	Bestimmungs- grenze	Messprinzip
Arsen im PM ₁₀		0,24 ng/m³	Atomabsorptionsspektrometrie mit Hydridsystem
Nickel im PM ₁₀		1,2 ng/m³	
Kadmium im PM ₁₀		0,24 ng/m³	Atomabsorptionsspektrometrie im Graphitrohrofen mit Zeeman Untergrundkorrektur
Blei im PM ₁₀		0,0012 μg/m³	200mm Omorgrandhorroktur
Benzo(a)pyren		0,06 ng/m³	Hochleistungsflüssigchromatographie (HPLC) gemäß ÖNORM EN 15549

Tabelle 42: Überblick über die diskontinuierlichen Messverfahren

7.6 Messunsicherheiten

In der IG-L-Messkonzeptverordnung 2012 [2] wird in § 10, § 11 und § 20 die Qualitätssicherung der Messdaten vorgeschrieben, wobei österreichweit einheitlich vorzugehen ist. Die Messunsicherheit ist dabei basierend auf den Bestimmungen festgelegter CEN-Leitfäden und –Berichte, sowie einer ISO-Norm zu beurteilen (siehe IG-L-MKV, Anlage 4).

Von Vertretern der Länder, des Umweltbundesamtes, sowie des Bundes wurde ein Leitfaden [21] zur Immissionsmessung nach dem Immissionsschutzgesetz-Luft [1] erarbeitet. Er enthält die geforderten Anforderungen an eine österreichweit einheitliche Vorgangsweise für die Qualitätssicherung von Immissionsmessungen nach IG-L.

Ob die erhobenen Messdaten diesen Qualitätszielen entsprechen, wird gemäß Leitfaden [21] durch die Ermittlung der relativen erweiterten kombinierten Messunsicherheit beschrieben.

Die kombinierte Messunsicherheit setzt sich aus den messgeräte- und ortsspezifischen Anteilen, Unsicherheiten des Messverfahrens und der zur Kalibration eingesetzten Prüfgasquelle zusammen, die einzelnen Beiträge werden dabei aufsummiert. Verluste durch die Probenahme werden in der Berechnung nicht berücksichtigt.

Für die erweiterte kombinierte Messunsicherheit wird die kombinierte Messunsicherheit mit Zwei multipliziert, um ein Vertrauensniveau von 95 % zu erreichen. Diese erweiterte kombinierte Messunsicherheit wird für den

Vergleich mit den als Prozentzahlen ausgedrückten Datenqualitätszielen (in der Regel 15%) durch Bezug auf den jeweiligen Grenzwert in die relative erweiterte kombinierte Messunsicherheit umgerechnet.

Im Feldbetrieb wird die Messunsicherheit von Schwefeldioxid, Stickstoffoxide und Ozon für den Einstundenmittelwert, für Kohlenmonoxid für den Achtstundenmittelwert, sowie für Schwefeldioxid, Stickstoffoxide und Ozon auch für den Jahresmittelwert berechnet.

Für die einzelnen Komponenten ergeben sich über alle Wiener Messstellen für den Einstundenmittelwert bzw. bei Kohlenmonoxid für den Achtstundenmittelwert die in Tabelle 43 angeführten Werte.

Komponente	relative erweiterte kombinierte Messunsicherheit, Mittel aller Stationen	relative erweiterte kombinierte Messunsicherheit, Maximum	Datenqualitäts- ziel	_	Anzahl Messstellen
SO_2	9,8 %	9,8 %	15 %	ja	7
NO/NO ₂	9,1 %	9,6 %	15 %	ja	17
СО	11,2 %	11,2 %	15 %	ja	4
O ₃	7 %	7 %	15 %	ja	5

Tabelle 43: relative erweiterte kombinierte Messunsicherheiten für Einstundenmittelwerte

Für die einzelnen Komponenten ergeben sich über alle Stationen für den Jahresmittelwert die in Tabelle 44 angeführten Werte.

Komponente	relative erweiterte kombinierte Messunsicherheit, Mittel aller Stationen	relative erweiterte kombinierte Messunsicherheit, Maximum	Datenqualitäts- ziel	Datenqualitäts- ziel eingehalten	Anzahl Messstellen
SO_2	6,4 %	8,3 %	15 %	ja	7
NO/NO ₂	9,1 %	9,6 %	15 %	ja	17
O ₃	5,1 %	5,1 %	15 %	ja	5

Tabelle 44: relative erweiterte kombinierte Messunsicherheiten für Jahresmittelwerte

Für die kontinuierlichen tageszeitauflösenden Feinstaubmessungen ist eine relative erweiterte Messunsicherheit von 25 % in Bezug auf den Tagesmittelwert zulässig. Die Beurteilung erfolgt dabei im Rahmen des Nachweises der Äquivalenz und der Herleitung von Kalibrierfunktionen mit Hilfe einer europaweit einheitlichen Excel-Auswertung (siehe Abschnitt 7.7). Nach diesen Ergebnissen wird das Datenqualitätsziel von 25 % für Feinstaub in den Fraktionen PM_{10} und $PM_{2,5}$ im Jahr 2013 in Wien eingehalten, wie aus nachstehender Tabelle 45 ersichtlich ist.

Komponente	relative erweiterte Messunsicherheit, Mittel aller Stationen	relative erweiterte Messunsicherheit, Maximum	Datenqualitäts- ziel	Datenqualitäts- ziel eingehalten	Anzahl Messstellen
PM_{10}	15,1 %	20,2 %	25 %	ja	5
PM _{2,5}	20,8 %	23,1 %	25 %	ja	6

Tabelle 45: relative erweiterte Messunsicherheiten für kontinuierliche Feinstaub-Jahresmittelwerte

7.7 Nachweis der Äquivalenz und Herleitung von Kalibrierfunktionen

Gemäß IG-L-MKV 2012, Anlage 1, Abschnitt B, müssen die Messnetzbetreiber, wenn sie ein anderes Verfahren als die Referenzmethode einsetzen, nachweisen, dass das eingesetzte Messverfahren äquivalente

Ergebnisse liefert. Die zur Anpassung an das Referenzverfahren angewandte Kalibrierfunktion, sowie deren Herleitung sind im Jahresbericht zu dokumentieren. Die Messstationen, an denen für den Nachweis der Äquivalenz Parallelmessungen mit der Referenzmethode durchgeführt wurden, müssen genannt werden.

Für den Nachweis der Äquivalenz ist der Leitfaden der Kommission der Europäischen Gemeinschaften (Guide to the demonstration of equivalence of ambient air monitoring methods [19]) heranzuziehen.

Zur Feinstaub-Messung wurden im Jahr 2013 im Wiener Luftmessnetz Messungen nach dem Referenzverfahren (gravimetrische Messungen mittels Digitel DA-80H) und äquivalente Messverfahren mit Messgeräten der Type Grimm EDM 180 und Eberline FH62 I/R. Weitere Einzelheiten zu den Messverfahren sind in Tabelle 41 angegeben.

7.7.1 Verwendete Kalibrierfunktionen

Kalibrierfunktionen äquivalenter PM₁₀-Ergebnisse

PM ₁₀ -Messstelle	Zeitraum	Messgeräte-Typ	Kalibrierfunktion				
Taborstraße ¹⁷	ab 1.1.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
AKH ¹⁷	ab 1.1.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Belgradplatz	ab 1.1.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Laaer Berg	ab 1.1.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Kaiser-Ebersdorf	ab 1.1.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Rinnböckstraße ¹⁷	bis 21.10.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Rinnböckstraße ¹⁷	ab 21.10.	Eberline FH62 I/R	$y_{PM10} = \frac{y_{FH62IR-PM10} + 1,43}{0,85}$				
Gaudenzdorf	bis 7.4.	Eberline FH62 I/R	$y_{PM10} = \frac{y_{FH62IR-PM10} + 1,43}{0,85}$				
Gaudenzdorf	ab 10.4.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Kendlerstraße	ab 1.1.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Schafberg	bis 7.4.	Eberline FH62 I/R	$y_{PM10} = \frac{y_{FH62IR-PM10} + 1,43}{0,85}$				
Schafberg	ab 9.4.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Gerichtsgasse	bis 7.4.	Eberline FH62 I/R	$y_{PM10} = \frac{y_{FH62IR-PM10} + 1,43}{0,85}$				
Gerichtsgasse	ab 9.4.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Lobau	ab 1.1.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Stadlau ¹⁷	ab 1.1.	Grimm EDM-180	$y_{PM10} = y_{Grimm-PM10}$				
Liesing-Gewerbegebiet ¹⁷	ab 1.1.	Grimm EDM-180	$y_{PM10} = 0.908 y_{Grimm-PM10} - 1$				

Tabelle 46: Kalibrierfunktionen für äquivalente $PM_{10}\text{-}Ergebnisse$ des Jahres 2013

 $^{^{17}}$ An dieser Messstation wurde PM_{10} mit dem gravimetrischen Referenzverfahren gemessen. Zur tagesaktuellen Berichterstattung hat das Wiener Luftmessnetz parallel dazu äquivalente Messverfahren eingesetzt. Die im Jahresbericht veröffentlichten Messergebnisse stammen jedoch vom Referenzverfahren.

Kalibrierfunktionen äquivalenter PM_{2,5}-Ergebnisse

PM _{2,5} -Messstelle	Zeitraum	Messgeräte-Typ	Kalibrierfunktion				
Taborstraße ¹⁸	ab 1.1.	Grimm EDM-180	$y_{PM2,5} = 0.898 y_{Grimm-PM2,5} - 0.25$				
AKH ¹⁸	ab 1.1.	Grimm EDM-180	$y_{PM2,5} = 0.898 y_{Grimm-PM2,5} - 0.25$				
Rinnböckstraße ¹⁸	ab 1.1.	Grimm EDM-180	$y_{PM2,5} = 0.898 y_{Grimm-PM2,5} - 0.25$				
Kendlerstraße ¹⁸	ab 1.1.	Grimm EDM-180	$y_{PM2,5} = 0.898 y_{Grimm-PM2,5} - 0.25$				
Lobau ¹⁸	ab 1.1.	Grimm EDM-180	$y_{PM2,5} = 0.898 y_{Grimm-PM2,5} - 0.25$				
Stadlau ¹⁸	ab 1.1.	Grimm EDM-180	$y_{PM2,5} = 0.898 y_{Grimm-PM2,5} - 0.25$				

Tabelle 47: Kalibrierfunktionen für äquivalente PM_{2.5}-Ergebnisse des Jahres 2013

7.7.2 Herleitung der Kalibrierfunktionen

PM₁₀, Grimm EDM-180

Während des Jahres 2013 wurden im Wiener Luftmessnetz die folgenden Kalibrierfunktionen verwendet (Herleitung siehe [12]):

1. Kalibrierfunktion für Wien, ohne "Liesing-Gewerbegebiet":

$$y_{PM10} = 0.955 y_{Grimm-PM10} + 0.945$$

2. Kalibrierfunktion für "Liesing-Gewerbebegiet":

$$y_{PM10} = 0.853 y_{Grimm-PM10} + 0.55$$

Die Ergebnisse in den veröffentlichten Tages- und Monatsberichten des Jahres 2013 basieren auf dieser Kalibrierfunktion.

Das Wiener Luftmessnetz hat gemäß Leitfaden [19] diese Kalibrierfunktion durch Parallelmessung mit dem gravimetrischen Referenzverfahren im Zeitraum 1.1.2013 bis 31.12.2013 an den fünf Messstellen "Taborstraße", "AKH", "Rinnböckstraße", "Stadlau" und "Liesing-Gewerbegebiet" überprüft. Die unter Anwendung obiger Kalibrierfunktion ermittelten Vergleichsdaten bestehen die im Leitfaden [19] vorgeschriebenen Tests¹⁹ nicht! Dabei zeigen die Vergleichsdaten der Messstelle "Liesing-Gewerbegebiet" weiterhin einen anderen Zusammenhang als die der restlichen Messstellen. Als Folge daraus wurden für äquivalente PM₁₀-Ergebnisse von Messgeräten der Type Grimm EDM-180 zwei neue Kalibrierfunktionen ermittelt:

1. Kalibrierfunktion für Wien, ohne "Liesing-Gewerbegebiet":

$$y_{PM10} = y_{Grimm-PM10}$$

2. Kalibrierfunktion für "Liesing-Gewerbebegiet":

$$y_{PM10} = 0.908 y_{Grimm-PM10} - 1$$

Diese Kalibrierfunktionen wurden rückwirkend für alle Ergebnisse 2013 angewendet und werden für die tagesaktuelle Berichterstattung, sowie die Erstellung von Monatsberichten auch im Jahr 2014 eingesetzt.

¹⁸ An dieser Messstation wurde PM_{2,5} mit dem gravimetrischen Referenzverfahren gemessen. Zur tagesaktuellen Berichterstattung hat das Wiener Luftmessnetz parallel dazu äquivalente Messverfahren eingesetzt. Die im Jahresbericht veröffentlichten Messergebnisse stammen jedoch vom Referenzverfahren.

¹⁹ Die Tests wurden mit der europaweit standardisierten Excel-Auswertung [20] durchgeführt.

Die Herleitung dieser Kalibrierfunktionen erfolgte mit Hilfe der standardisierten Excel-Anwendung [20]. Die Ergebnisse sind in den folgenden beiden Tabellen zusammengefasst.

Testfall bei $y_{PM10} = y_{Grimm-PM10}$	Anzahl gültiger Wertepaare	entfernte Ausreißer	Wertepaare Frühling	Wertepaare Sommer	Wertepaare Herbst	Wertepaare Winter	Erweiterte relative Messunsicherheit ²⁰	Test bestanden?
Taborstraße	323	3	92	53	89	89	13,2%	ja
AKH	365	0	92	92	91	90	12,7%	ja
Rinnböckstraße	291	2	90	92	51	58	14,9%	ja
Stadlau	364	1	92	92	91	89	14,7%	ja
alle Stationen	1343	6	366	329	322	326	13,5%	ja
alle Wertepaare $> 30 \mu g/m^3$	404	3	151	30	69	154	14,4%	ja

Tabelle 48: äquivalente PM₁₀-Ergebnisse (Testfälle) mit dem Messgerätetyp Grimm EDM-180 für ganz Wien ohne der Station "Liesing-Gewerbegebiet"

Testfall bei $y_{PM10} = 0,908 y_{Grimm-PM10} - 1$	Anzahl gültiger Wertepaare	entfernte Ausreißer	Wertepaare Frühling	Wertepaare Sommer	Wertepaare Herbst	Wertepaare Winter	Erweiterte relative Messunsicherheit ²¹	Test bestanden?
Liesing-Gewerbegebiet	351	13	86	89	88	88	20,2%	ja
alle Wertepaare $> 30 \mu g/m^3$	127	12	37	22	33	35	26,6%	nein

Tabelle 49: äquivalente PM₁₀-Ergebnisse (Testfälle) mit dem Messgerätetyp Grimm EDM-180 für die Station "Liesing-Gewerbegebiet"

Für die Messstelle "Liesing-Gewerbegebiet" konnte keine Kalibrierfunktion gefunden werden, die alle Testkriterien erfüllt. Das kontinuierliche Messverfahren wird dort jedoch nur für die tagesaktuelle Berichterstattung verwendet, die offiziellen PM_{10} -Werte werden mit dem gravimetrischen Referenzverfahren gemessen.

PM₁₀, Eberline FH62 I/R

Messgeräte der Type Eberline FH62 I/R zur Messung von PM_{10} hat das Wiener Luftmessnetz im Jahr 2013 nur noch vereinzelt und für wenige Monate eingesetzt. Die notwendige Kalibrierfunktion wurde vom Umweltbundesamt 2008 (siehe [18]) bestimmte und lautet:

$$y_{PM10} = \frac{y_{FH62-PM10} - 1,43}{0,85}$$

 $^{^{20}}$ Die erweiterte relative Messunsicherheit berücksichtigt sämtliche Fehlerarten des Messverfahrens und muss für PM $_{10}$ unter 25% liegen.

²¹ Die erweiterte relative Messunsicherheit berücksichtigt sämtliche Fehlerarten des Messverfahrens und muss für PM_{2,5} unter 25% liegen.

Diese Kalibrierfunktion wurde zuletzt im Vorjahr vom Wiener Luftmessnetz anhand von Parallelmessungen überprüft und hat die vorgeschriebenen Tests bestanden. Eine neuerliche Überprüfung dieser Kalibrierfunktion wurde nicht durchgeführt.

PM_{2.5}, Grimm EDM-180

Während des Jahres 2013 wurde im Wiener Luftmessnetz die folgende Kalibrierfunktion verwendet (Herleitung siehe [12]):

$$y_{PM2.5} = 0.866 y_{Grimm-PM2.5} + 0.661$$

Die Ergebnisse in den veröffentlichten Tagesberichten des Jahres 2013 basieren auf dieser Kalibrierfunktion.

Das Wiener Luftmessnetz hat gemäß Leitfaden [19] diese Kalibrierfunktion durch Parallelmessung mit dem gravimetrischen Referenzverfahren im Zeitraum 1.1.2013 bis 31.12.2013 an den sechs Messstellen "Taborstraße", "AKH", "Rinnböckstraße", "Kendlerstraße", "Lobau" und "Stadlau" überprüft.

Die unter Anwendung obiger Kalibrierfunktion ermittelten Vergleichsdaten bestehen die im Leitfaden [19] vorgeschriebenen Tests²² nicht!

Daher wurde vom Luftmessnetz für äquivalente PM_{2,5}-Ergebnisse von Messgeräten der Type Grimm EDM-180 folgende neue Kalibrierfunktion mit Hilfe der Excel-Anwendung [20] ermittelt:

$$y_{PM2,5} = 0.898 y_{Grimm-PM2,5} - 0.25$$

Diese Kalibrierfunktion wurde rückwirkend für alle Ergebnisse 2013 angewendet und wird für die tagesaktuelle Berichterstattung auch im Jahr 2014 eingesetzt.

Die Testergebnisse für die entsprechende PM_{2,5}-Kalibrierfunktion des Grimm EDM-180 Messgerätes sind in der folgenden Tabelle zusammengefasst:

Testfall bei $y_{PM2,5} = 0.898 y_{Grimm-PM2,5} - 0.25$	Anzahl gültiger Wertepaare	entfernte Ausreißer	Wertepaare Frühling	Wertepaare Sommer	Wertepaare Herbst	Wertepaare Winter	Erweiterte relative Messunsicherheit ²³	Test bestanden?
Taborstraße	364	1	92	92	91	89	23,1%	ja
AKH	365	0	92	92	91	90	19,0%	ja
Rinnböckstraße	293	1	92	92	51	58	19,5%	ja
Kendlerstraße	362	2	92	92	91	87	21,7%	ja
Lobau	365	0	92	92	91	90	20,6%	ja
Stadlau	358	1	90	91	88	89	21,1%	ja
alle Stationen	2107	5	550	551	503	503	20,5%	ja
alle Wertepaare $> 18 \mu g/m^3$	791	5	269	102	123	297	25,2%	ja

Tabelle 50: äquivalente PM25-Ergebnisse (Testfälle) mit dem Messgerätetyp Grimm EDM-180 für Wien

Der Testfall "alle Wertepaare $> 18~\mu g/m^{3}$ " wird knapp bestanden, da die entsprechende Messunsicherheit, gerundet auf ganze Prozent nicht über den geforderten 25% liegt.

 $^{^{22}}$ Die Tests wurden mit der europaweit standardisierten Excel-Auswertung [20] durchgeführt.

²³ Die erweiterte relative Messunsicherheit berücksichtigt sämtliche Fehlerarten des Messverfahrens und muss für PM_{2,5} unter 25% liegen.

8 Literatur²⁴

- [1] Bundesgesetz zum Schutz vor Immissionen durch Luftschadstoffe, mit dem die Gewerbeordnung 1994, das Luftreinhaltegesetz für Kesselanlagen, das Berggesetz 1975, das Abfallwirtschaftsgesetz und das Ozongesetz geändert werden (*Immissionsschutzgesetz-Luft, IG-L*), BGBl I Nr. 115/1997, idF BGBl. I Nr. 77/2010
- [2] Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über das Messkonzept zum Immissionsschutzgesetz-Luft (IG-L-MKV 2012), BGBl. II Nr. 127/2012.
- [3] Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über den Aktionsplan zum Immissionsschutzgesetz-Luft, BGBl. II Nr. 207/2002.
- [4] Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation, BGBl. II Nr. 298/2001.
- [5] Bundesgesetz über Maßnahmen zur Abwehr der Ozonbelastung und die Information der Bevölkerung über hohe Ozonbelastungen, mit dem das Smogalarmgesetz, BGBl. Nr. 38/1989, geändert wird (*Ozongesetz*), BGBl 210/1992, idF BGBl I 34/2003.
- [6] Verordnung des Bundesministers für Umwelt, Jugend und Familie über die Einteilung des Bundesgebietes in Ozon-Überwachungsgebiete, BGBl 513/1992, idF BGBl II 359/1998.
- [7] Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über das Messkonzept und das Berichtswesen zum Ozongesetz (*Ozonmesskonzeptverordnung Ozon-MKV*), BGBl II Nr. 99/2004, idF BGBl II 128/2012.
- [8] Richtlinie 2008/50/EG des Europäischen Parlaments und des Rates vom 21. Mai 2008 über Luftqualität und saubere Luft in Europa, Amtsblatt der Europäischen Union Nr. L 152 vom 11.6.2008, S. 1 44.
- [9] Amt der Wiener Landesregierung: Statuserhebung Hietzinger Kai 2000 Stickstoffdioxid (NO₂).
 MA 22 Umweltschutz, MA 22 5389/2001, 2001,
 http://www.wien.gv.at/umwelt/luft/pdf/iglstatus2000.pdf.
- [10] Amt der Wiener Landesregierung: Statuserhebung PM10 2002 & 2003 in Wien. MA 22 – Umweltschutz, MA 22 – 246/2005, 2005, http://www.wien.gv.at/umwelt/luft/pdf/iglstatus2003-pm10.pdf.
- [11] Amt der Wiener Landesregierung: *Statuserhebung NO*₂ 2002 & 2003 in Wien. MA 22 Umweltschutz, MA 22 687/2005, 2005, http://www.wien.gv.at/umwelt/luft/pdf/iglstatus2003-no2.pdf.
- [12] Amt der Wiener Landesregierung: Jahresbericht 2012, Luftgütemessungen der Umweltschutzabteilung der Stadt Wien gemäß Immissionsschutzgesetz-Luft.
 MA 22 Umweltschutz, MA 22 500/2010, 2013, http://www.wien.gv.at/umwelt/luft/pdf/luftguete2012.pdf.
- [13] Amt der Wiener Landesregierung: Statuserhebung SO₂ 2005 gemäß Immissionsschutzgesetz-Luft durchgeführt von Wien und Niederösterreich. MA 22 Umweltschutz, MA 22 272/2006, 2006, http://www.wien.gv.at/umwelt/luft/pdf/iglstatus2005-so2.pdf.
- [14] Amt der Wiener Landesregierung: Statuserhebung NO₂ 2006. MA 22 – Umweltschutz, MA 22 – 1295/2008, 2008, http://www.wien.gv.at/umwelt/luft/pdf/iglstatus2006-no2.pdf.

²⁴ Bundesgesetzblätter der Republik Österreich können über das Rechtsinformationssystem des Bundeskanzleramts (http://www.ris.bka.gv.at) eingesehen werden.

- [15] W. Spangl, C. Nagl: *Jahresbericht der Luftgütemessungen in Österreich 2011*. Umweltbundesamt GmbH, Reports, Band 0383, ISBN 978-3-99004-186-4, http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0383.pdf.
- [16] Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, betreffend die Kriterien für die Beurteilung, ob eine PM10-Grenzwertüberschreitung auf Aufwirbelung von Partikeln nach Ausbringung von Streusalz oder Streusplitt zurückzuführen ist, BGBl II Nr. 131/2012.
- [17] Wolf A., Fröhlich M., Moosmann L.: Äquivalenztest für PM10 und PM2,5, Äquivalenztest optischer PM-Monitore im Auftrag der Firma Grimm an 4 Messstellen in Österreich, Umweltbundesamt GmbH, Jänner 2010.
- [18] Fröhlich M.: "Österreichischer PM-Äquivalenztest", Umweltbundesamt GmbH, ÖAW Sitzung vom 6.11.2008.
- [19] EC WORKING GROUP (2010): "Guide to the Demonstration of Equivalence of Ambient Air Monitoring Methods", Report by an EC Working Group on Guidance for the Demonstration of Equivalence, Jänner 2010.

 (http://ec.europa.eu/environment/air/quality/legislation/pdf/equivalence.pdf)
- [20] Beijk, R.: Orthogonal Regression and Equivalence Test Utility, Version 2.9, RIVM (Dutch Institute for Public Health an the Environment, dep. Centre for Environment Monitoring), 22.3.2012. (http://ec.europa.eu/environment/air/quality/legislation/pdf/RIVM PM equivalence v2.9.xls).
- [21] Vertreter der Länder und des Bundes: *Leitfaden zur Immissionsmessung nach dem Immissionsschutzgesetz-Luft (i.d.g.F.)*, Österreichweit einheitliche Vorgangsweise zur Sicherstellung der Vergleichbarkeit der Immissionsmessdaten, Teil 1: Kontinuierliche Immissionsmessung von SO₂, NO_X, CO und O₃, Umweltbundesamt GmbH, 2009.